Neonatologie Scan 2013; 02(04): 315-336
DOI: 10.1055/s-0033-1344907
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Das amplitudenintegrierte EEG in der Neonatologie

Karl Florian Schettler
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. November 2013 (online)

Einleitung

Das amplitudenintegrierte EEG (aEEG) findet zunehmende Verbreitung in den neonatologischen Intensivstationen. Die Methode existiert bereits wesentlich länger als man vermuten möchte. Bereits 1969 beschrieben Prior und Maynard [1] die Methode bei Erwachsenen. In den 1970er und 1980er Jahren fand sie zunehmende Verwendung auch bei Kindern. Die erste Renaissance und auch eine deutliche Verbesserung erfuhr das aEEG, als in den 1990er Jahren die digitale Technik stark zunahm und nun das ursprüngliche Roh-EEG zusätzlich angezeigt und aufgenommen wurde. Besondere Bekanntheit erlangte das aEEG schließlich als Methode zur Identifikation von geeigneten asphyktischen Neugeborenen für Hypothermiestudien, wie z. B. der Cool-Cap-Studie. Das aEEG vermag aber weit mehr für uns zu leisten. In Bezug auf langfristiges neurologisches Funktionsmonitoring auf einer neonatologischen Intensivstation ist es derzeit die praktikabelste und am meisten genutzte Methode.

 
  • Literatur

  • 1 Prior M. Device for continuous monitoring of cerebral activity in resuscitated patients. Br Med J 1969; 29: 545-546
  • 2 Lavery S, Hunt F, Doyle I. Single versus bihemispheric amplitude-integrated EEG in relation to cerebral injury and outcome in the term encephalopathic infant. J Pediatr Child Health 2008; 44: 285-290
  • 3 Hellström-Wests L, Rosén I, de Vries LS et al. Amplitude-integrated EEG – Classification and Interpretation in preterm and term infants. NeoReviews 2006; 7: e76-e87
  • 4 Olischar M, Klebermass K et al. Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks' gestational age. Pediatrics 2004; 113: e61-e66
  • 5 Hellström-Wests L, Rosén I et al. Cerebral function monitoring in extremely small low birthweight (ESLBW) infants during the first week of life. Neuropediatrics 1991; 22: 27-32
  • 6 Kuhle S, Klebermass K, Olischar M et al. Sleep-wake cycling in preterm infants below 30 weeks of gestational age. Preliminary results of a prospective aEEG study. Wien Klin Wochenschr 2001; 113: 219-202
  • 7 Hagmann CF et al. Artifacts on electroencephalograms may influence the amplitude-integrated EEG classification: a qualitative analysis in neonatal encephalopathy. Pediatrics 2006; 118: 2552-2554
  • 8 Young GB, da Silva OP. Effects of morphine on the electroencephalograms of neonates: a prospective, observational study. Clin Neurophysiol 2000; 111: 1955-1960
  • 9 van Leuven K et al. Midazolam and amplitude integrated EEG in asphyxiated full-term neonates. Acta Pediatr 2004; 93: 1221-1227
  • 10 Bell AH, Greisen G et al. Comparison of the effects of phenobarbitone and morphine administration on EEG activity in preterm babies. Acta Paediatr 1993; 82: 35-39
  • 11 Hellström-Westas L, Bell AH et al. Cerebrocortical depression following surfactant treatment in preterm neonates. Pediatrics 1992; 89: 643-647
  • 12 al Naqueeb N, Edwards AD et al. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics 1999; 103: 1263-1271
  • 13 Shalak LF, Laptook AR et al. Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics 2003; 111: 351-357
  • 14 Shah DK, Lavery S, Doyle LW et al. Use of 2-channel bedside electroencephalogram monitoring in term-born encephalopathic infants related to cerebral injury defined by magnetic resonance imaging. Pediatrics 2006; 118: 47-55
  • 15 van Rooij LG, Toet MC, Osredkar D et al. Recovery of amplitude electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 2005; 90: F245-F51
  • 16 Thoresen M, Hellström-Westas L et al. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 2010; 126: e131-e139
  • 17 Osredkar D, Toet MC et al. Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics 2005; 115: 327-332
  • 18 Legido M et al. Neurologic outcome after electroencephalographic proven seizures. Pediatrics 1991; 88: 583-596
  • 19 Seth RD. Electroencephalogram confirmatory rate in neonatal seizures. Pediatr Neurol 1999; 20: 27-30
  • 20 Hellström-Westas L, Rosén I, Svenningsen NW. Silent seizures in sick infants in early life. Acta Pediatr Scand 1985; 74: 741-748
  • 21 Scher MS, Aso K, Beggarly ME et al. Electrographic seizures in preterm and full-term neonates: clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics 1993; 91: 128-134
  • 22 Shellhaas RA, Barks AK. Impact of amplitudeintegrated-EEG on the clinical care for neonates with seizures. Pediatr Neurol 2012; 46: 32-35
  • 23 Oliveira AJ, Nunes ML, Haertel LM et al. Duration of rhythmic EEG patterns in neonates: new evidence for clinical and prognostic significance of brief rhythmic discharges. Clin Neurophysiol 2000; 111: 1646-1653
  • 24 Toet MC, van der Meij W, de Vries LS et al. Comparison between simultaneously recorded amplitude integrated EEG (cerebral function monitor) and standard EEG in neonates. Pediatrics 2002; 109: 772-779
  • 25 Shellhaas RA et al. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics 2007; 120: 770-777
  • 26 Sisman J et al. Amplitude-integrated EEG in preterm infants: maturation of background pattern and amplitude voltage with postmenstrual age and gestational age. J Perinatol 2005; 25: 391-396
  • 27 Klebermass K et al. Intra- and extrauterine maturation of amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks of gestation. Biol Neonat 2006; 89: 120-125
  • 28 Supcun S, Kutz P, Pielemeier W et al. Caffeine increases cerebral cortical activity in preterm infants. J Pediatr 2010; 156: 490-491
  • 29 Olischar M, Klebermass K et al. Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks' gestational age. Pediatrics 2004; 113: e61-e66
  • 30 Olischar M et al. Background patterns and sleep-wake cycles on aEEG in preterms younger than 30 weeks gestational age with peri-/intraventricular haemorrhage. Acta Paediatr 2007; 96: 1743-1750
  • 31 Olischar M, Klebermass K, Kuhle S et al. Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants. Childs Nerv Syst 2004; 20: 41-45
  • 32 Olischar M, Klebermass K et al. Cerebrospinal fluid drainage in posthaemorrhagic ventricular dilatation leads to improvement in amplitude-integrated electroencephalographic activity. Acta paediatrica 2009; 98: 1002-1009
  • 33 Wikström S et al. Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr 2012; 101: 719-726
  • 34 Klebermass K, Olischar M et al. Amplitude-integrated electroencephalography pattern predicts further outcome in preterm infants. Pediatr Res 2011; 70: 102-108
  • 35 Cowan F, Rutherford M et al. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 2003; 361: 736-742
  • 36 Connell J, Oozeer R et al. Continuous four channel EEG monitoring in the evaluation of echodense ultrasound lesions and cystic leukomalacia. Arch Dis Child 1987; 62: 1019-1024
  • 37 Clancy RR, Tharp BR et al. EEG in premature infants with intraventricular hemorrhage. Neurology 1984; 34: 583-590
  • 38 Hellström-Westas L, Klette H et al. Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics 2001; 32: 319-324
  • 39 Hayakawa F, Okumura A et al. Dysmature EEG pattern in EEGs of preterm infants with cognitive impairment: maturation arrest caused by prolonged mild CNS depression. Brain Dev 1997; 19: 122-125
  • 40 Menache CC, Bourgeois BF, Volpe JJ. Prognostic value of neonatal discontinuous EEG. Pediatr Neurol 2002; 27: 93-101
  • 41 Theda C. Use of amplitude integrated electroencephalography (aEEG) in patients with inborn errors of metabolism – a new tool for the metabolic geneticist. Mol Genet Metab 2010; 100: 42-48
  • 42 Menache CC, du Plessis AJ, Wessel DL et al. Current incidence of acute neurologic complications after open heart operations in children. Ann Thorac Surg 2002; 73: 1752-1758
  • 43 Glauser TA, Rorke LB, Weinberg PM et al. Acquired neuropathologic lesions associated with hypoplastic left heart syndrome. Pediatrics 1990; 85: 991-1000
  • 44 Newburger J, Jonas R, Wernovsky G et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med 1993; 329: 1057-1064
  • 45 Galli M et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2004; 127: 692-704
  • 46 Bellinger DC, Jonas RA, Rappaport L et al. Developmental and neurological status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 1995; 332: 549-555
  • 47 Thompson C et al. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr 1997; 86: 757-761
  • 48 Horn D, Swingler J et al. Early clinical signs in neonates with hypoxic ischmic encephalopathy predict an abnormal amplitude-integrated electroencephalogram at age 6 hours. BMC Pediatr 2013; 13: 52
  • 49 Shah M, Paradisis B, Bowen R. Relationship between systemic blood flow, blood pressure, inotropes, and aEEG in first 48 hours of life in extremely preterm infants. Pediatr Res 2013; [epub ahead of print]
  • 50 Natalucci N, Rousson B et al. Delayed cyclic activity development on early amplitude-integrated EEG in the preterm infant with brain lesions. Neonatology 2013; 103: 134-140
  • 51 Olischar D, Shany B et al. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology 2012; 102: 203-211
  • 52 Gunn C, Beca D et al. Perioperative amplitude-integrate EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med 2012; 38: 1539-1547