Subscribe to RSS
DOI: 10.1055/s-0033-1345194
Neues zur Huntington-Krankheit
Huntington’s Disease UpdatePublication History
Publication Date:
03 July 2013 (online)
Zusammmenfassung
Als im Jahr 1993 das krankheitsverursachende Gen der Huntington-Krankheit (HK) entdeckt wurde, schienen ein rasches Verständnis der Pathogenese dieser hereditären neurodegenerativen Erkrankung und eine kausale Therapie in greifbare Nähe gerückt zu sein. Allerdings gestaltet sich die Entwicklung einer wirksamen und früh im Krankheitsprozess einsetzbaren Behandlung durch die komplexe Pathophysiologie der HK schwierig. Die volle Penetranz dieser monogenetischen Erkrankung ermöglicht es jedoch, modellhaft neurodegenerative Prozesse mit gestörter Proteinhomöostase und RNA-Toxizität sowie rationale Ansatzpunkte für kausal angreifende Therapien zu erforschen und Mutationsträger vor der Entwicklung klinisch erkennbarer Auffälligkeiten in Verlaufsstudien zu untersuchen. Diese Studien (TRACK-HD, PREDICT-HD) haben zur Identifikation von MRT-basierten Indikatoren der Neurodegeneration im prämanifesten Stadium geführt, die mit messbaren, aber subtilen funktionellen Veränderungen korrelieren. Standardisierte Untersuchungen im Rahmen von Beobachtungsstudien wie REGISTRY und Fortschritte in den Methoden der Genetik erlauben darüber hinaus eine breitgefächerte Suche nach krankheitsmodifizierenden Einflussfaktoren. Die Therapie der HK ist zur Zeit noch auf symptomatische Maßnahmen beschränkt, aber eine kontinuierliche ärztliche Begleitung und eine an die unterschiedlichen Symptome der verschiedenen Krankheitsphasen angepasste Behandlung verbessern die Lebensqualität der Betroffenen und ihrer Familien messbar. Neue Ansatzpunkte für mechanismenbasierte therapeutische Interventionen geben konkreten Anlass zur Hoffnung, in absehbarer Zukunft den Krankheitsverlauf günstig beeinflussen zu können. Dieser Artikel gibt eine Übersicht über den aktuellen Stand derzeitiger und zukünftiger Behandlungsstrategien sowie Fortschritte in der Biomarkerentwicklung.
Abstract
The discovery of the gene mutation causing Huntington’s disease (HD) 20 years ago raised high hopes for a better understanding of its pathogenesis from primary cause to all of its down-stream ramifications. A rapid development of targeted treatments for this monogenetic disorder appeared to be within reach. Despite concerted efforts there is still no cure and establishing disease modifying treatments continues to remain an elusive goal; the pathophysiology of this slowly progressive disorder proved to be more complex than anticipated. However, research in HD has offered unique insights into a disrupted protein homeostasis and RNA toxicity due to structural RNA alterations as key features in most neurodegenerative disorders. The full penetrance of the HD expansion mutation greatly facilitated the identification of biomarkers for stages of the disease process prior to the emergence of diagnostic clinical symptoms and signs. Large observational studies like TRACK-HD and PREDICT-HD involving pre-manifest mutation carriers and patients in early disease stages allowed the identification of imaging markers for neurodegeneration, correlating with subtle functional changes. Standardised assessments in large observational studies like REGISTRY and advances in genetic techniques allow for a comprehensive search for genetic and environmental modifiers of the features and of the course of HD. Treatment is currently restricted to symptomatic relief, but competent care provided by health-care professionals knowledgeable about HD has a measurable impact on the life of people affected by HD. While a disease-modifying therapy for HD has yet to be established, observations in model systems for HD suggest a rational basis for future clinical trials and raise hopes that efficient interventions will be developed which can improve the life of HD affected people and their families.
-
Literatur
- 1 Pringsheim T, Wiltshire K, Day L et al. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 2012; 27: 1083-1091
- 2 Rawlins M. Huntington’s disease out of the closet?. Lancet 2010; 376: 1372-1373
- 3 Morrison PJ. Prevalence estimates of Huntington disease in Caucasian populations are gross underestimates. Mov Disord 2012; 27: 1707-1708
- 4 Orth M, Handley OJ, Schwenke C et al. Observing Huntington’s disease: the European Huntington’s Disease Network’s REGISTRY. J Neurol Neurosurg Psychiatry 2011; 82: 1409-1412
- 5 Walker FO. Huntington’s disease. Lancet 2007; 369: 218-228
- 6 Kirkwood SC, Siemers E, Viken R et al. Longitudinal personality changes among presymptomatic Huntington disease gene carriers. Neuropsychiatry Neuropsychol Behav Neurol 2002; 15: 192-197
- 7 Leroi I, Michalon M. Treatment of the psychiatric manifestations of Huntington’s disease: a review of the literature. Can J Psychiatry 1998; 43: 933-940
- 8 Craufurd D, Thompson JC, Snowden JS. Behavioral changes in Huntington Disease. Neuropsychiatry Neuropsychol Behav Neurol 2001; 14: 219-226
- 9 Duff K, Paulsen JS, Beglinger LJ et al. Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 2007; 62: 1341-1346
- 10 Trembath MK, Horton ZA, Tippett L et al. A retrospective study of the impact of lifestyle on age at onset of Huntington disease. Mov Disord 2010; 25: 1444-1450
- 11 Rüb U, Hoche F, Brunt ER et al. Degeneration of the Cerebellum in Huntington’s Disease (HD): Possible Relevance for the Clinical Picture and Potential Gateway to Pathological Mechanisms of the Disease Process. Brain Pathol 2013; 23: 165-177
- 12 Gabery S, Murphy K, Schultz K et al. Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathol 2012; 120: 777-788
- 13 Wheelock VL, Tempkin T, Marder K et al. Predictors of nursing home placement in Huntington disease. Neurology 2003; 60: 998-1001
- 14 Stout JC, Jones R, Labuschagne I et al. Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington’s disease. J Neurol Neurosurg Psychiatry 2012; 83: 687-694
- 15 Roos RA. Huntington’s disease: a clinical review. Orphanet J Rare Dis 2010; 5: 40
- 16 Sprengelmeyer R, Young AW, Calder AJ et al. Loss of disgust. Perception of faces and emotions in Huntington’s disease. Brain 1996; 119 (Pt 5) 1647-1665
- 17 Kloppel S, Stonnington CM, Petrovic P et al. Irritability in pre-clinical Huntington’s disease. Neuropsychologia 2010; 48: 549-557
- 18 Johnson SA, Stout JC, Solomon AC et al. Beyond disgust: impaired recognition of negative emotions prior to diagnosis in Huntington’s disease. Brain 2007; 130: 1732-1744
- 19 Hart EP, Marinus H, Burgunder JM et al. Better global and cognitive functioning for choreatic compared to hypokinetic-rigid Huntington’s disease. J Neurol Neurosurg Psychiatry 2012; 83: A2
- 20 Siesling S, Vegter-van der Vlis M, Roos RA. Juvenile Huntington disease in the Netherlands. Pediatr Neurol 1997; 17: 37-43
- 21 Quarrell OWJ, Brewer HM, Squitieri F et al. Juvenile Huntington’s Disease (and other trinucleotide repeat disorders). Oxford University Press; 2009
- 22 The Huntington’s Disease Collaborative Research Group . A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971-983
- 23 Sequeiros J, Ramos EM, Cerqueira J et al. Large normal and reduced penetrance alleles in Huntington disease: instability in families and frequency at the laboratory, at the clinic and in the population. Clin Genet 2010; 78: 381-387
- 24 International Huntington Association and the World Federation of Neurology Research Group on Huntington’s Chorea . Guidelines for the molecular genetics predictive test in Huntington’s disease. J Med Genet 1994; 31: 555-559
- 25 Bundesärztekammer. Richtlinien zur prädiktiven genetischen Diagnostik. Dtsch Arztebl 2003; 100: A 1297-A 1305
- 26 van der Burg JM, Bjorkqvist M, Brundin P. Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol 2009; 8: 765-774
- 27 Arrasate M, Finkbeiner S. Protein aggregates in Huntington’s disease. Exp Neurol 2012; 238: 1-11
- 28 Sathasivam K, Neueder A, Gipson TA et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci USA 2013; 110: 2366-2370
- 29 Braak H, Braak E. Allocortical involvement in Huntington’s disease. Neuropathol Appl Neurobiol 1992; 18: 539-547
- 30 Kremer HP, Roos RA, Dingjan G et al. Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 1990; 49: 371-382
- 31 Braak H, Braak E. Anatomy of the human hypothalamus (chiasmatic and tuberal region). Prog Brain Res 1992; 93: 3-14 discussion 14–16
- 32 Gusella JF, MacDonald ME. Huntington’s disease. Semin Cell Biol 1995; 6: 21-28
- 33 Arning L, Kraus PH, Valentin S et al. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 2005; 6: 25-28
- 34 Saft C, Epplen JT, Wieczorek S et al. NMDA receptor gene variations as modifiers in Huntington disease: a replication study. PLoS Curr 2011; 3 RRN1247
- 35 Snell RG, MacMillan JC, Cheadle JP et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 1993; 4: 393-397
- 36 Farrer LA, Cupples LA, Wiater P et al. The normal Huntington disease (HD) allele, or a closely linked gene, influences age at onset of HD. Am J Hum Genet 1993; 53: 125-130
- 37 Djousse L, Knowlton B, Hayden M et al. Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet A 2003; 119A: 279-282
- 38 Kehoe P, Krawczak M, Harper PS et al. Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet 1999; 36: 108-111
- 39 Klempir J, Zidovska J, Stochl J et al. The number of CAG repeats within the normal allele does not influence the age of onset in Huntington’s disease. Mov Disord 2011; 26: 125-129
- 40 Aziz NA, Jurgens CK, Landwehrmeyer GB et al. Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease. Neurology 2009; 73: 1280-1285
- 41 Lee JM, Ramos EM, Lee JH et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 2012; 78: 690-695
- 42 Arning L, Saft C, Wieczorek S et al. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet 2007; 122: 175-182
- 43 Popoli P, Blum D, Martire A et al. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 2007; 81: 331-348
- 44 Taherzadeh-Fard E, Saft C, Wieczorek S et al. Age at onset in Huntington’s disease: replication study on the associations of ADORA2A, HAP1 and OGG1. Neurogenetics 2010; 11: 435-439
- 45 Kaltenbach LS, Romero E, Becklin RR et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 2007; 3: e82
- 46 Metzger S, Rong J, Nguyen HP et al. Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington’s disease. Hum Mol Genet 2008; 17: 1137-1146
- 47 Holbert S, Denghien I, Kiechle T et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci USA 2001; 98: 1811-1816
- 48 Arning L, Monte D, Hansen W et al. ASK1 and MAP2K6 as modifiers of age at onset in Huntington’s disease. J Mol Med (Berl) 2008; 86: 485-490
- 49 Chattopadhyay B, Baksi K, Mukhopadhyay S et al. Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neurosci Lett 2005; 374: 81-86
- 50 Arning L, Kraus PH, Saft C et al. Age at onset of Huntington disease is not modulated by the R72P variation in TP53 and the R196K variation in the gene coding for the human caspase activated DNase (hCAD). BMC Med Genet 2005; 6: 35
- 51 Andresen JM, Gayan J, Cherny SS et al. Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J Med Genet 2007; 44: 44-50
- 52 Saft C, Andrich JE, Brune N et al. Apolipoprotein E genotypes do not influence the age of onset in Huntington’s disease. J Neurol Neurosurg Psychiatry 2004; 75: 1692-1696
- 53 Rubinsztein DC, Leggo J, Chiano M et al. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci USA 1997; 94: 3872-3876
- 54 Panas M, Avramopoulos D, Karadima G et al. Apolipoprotein E and presenilin-1 genotypes in Huntington’s disease. J Neurol 1999; 246: 574-577
- 55 Metzger S, Bauer P, Tomiuk J et al. Genetic analysis of candidate genes modifying the age-at-onset in Huntington’s disease. Hum Genet 2006; 120: 285-292
- 56 Di Maria E, Marasco A, Tartari M et al. No evidence of association between BDNF gene variants and age-at-onset of Huntington’s disease. Neurobiol Dis 2006; 24: 274-279
- 57 Kishikawa S, Li JL, Gillis T et al. Brain-derived neurotrophic factor does not influence age at neurologic onset of Huntington’s disease. Neurobiol Dis 2006; 24: 280-285
- 58 Mai M, Akkad AD, Wieczorek S et al. No association between polymorphisms in the BDNF gene and age at onset in Huntington disease. BMC Med Genet 2006; 7: 79
- 59 Coppede F, Migheli F, Ceravolo R et al. The hOGG1 Ser326Cys polymorphism and Huntington’s disease. Toxicology 2010; 278: 199-203
- 60 Weydt P, Soyal SM, Gellera C et al. The gene coding for PGC-1alpha modifies age at onset in Huntington’s Disease. Mol Neurodegener 2009; 4: 3
- 61 Taherzadeh-Fard E, Saft C, Andrich J et al. PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegener 2009; 4: 10
- 62 Taherzadeh-Fard E, Saft C, Akkad DA et al. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener 2011; 6: 32
- 63 Che HV, Metzger S, Portal E et al. Localization of sequence variations in PGC-1alpha influence their modifying effect in Huntington disease. Mol Neurodegener 2011; 6: 1
- 64 Ramos EM, Latourelle JC, Lee JH et al. Population stratification may bias analysis of PGC-1alpha as a modifier of age at Huntington disease motor onset. Hum Genet 2012; 131: 1833-1840
- 65 van Dellen A, Cordery PM, Spires TL et al. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 2008; 9: 34
- 66 Wood NI, Carta V, Milde S et al. Responses to environmental enrichment differ with sex and genotype in a transgenic mouse model of Huntington’s disease. PLoS One 2010; 5: e9077
- 67 Simonin C, Duru C, Salleron J et al. Association between caffeine intake and age at onset in Huntington’s disease. Neurology 2013; in press
- 68 Killoran A, Biglan KM. Therapeutics in Huntington’s Disease. Curr Treat Options Neurol 2012; 14: 137-149
- 69 Johnson CD, Davidson BL. Huntington’s disease: progress toward effective disease-modifying treatments and a cure. Hum Mol Genet 2010; 19: R98-R102
- 70 Weir DW, Sturrock A, Leavitt BR. Development of biomarkers for Huntington’s disease. Lancet Neurol 2011; 10: 573-590
- 71 Tabrizi SJ, Langbehn DR, Leavitt BR et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 2009; 8: 791-801
- 72 Paulsen JS, Langbehn DR, Stout JC et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 2008; 79: 874-880
- 73 Tabrizi SJ, Reilmann R, Roos RA et al. Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 2012; 11: 42-53
- 74 Tabrizi SJ, Scahill RI, Durr A et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 2011; 10: 31-42
- 75 Lange H, Thorner G, Hopf A et al. Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci 1976; 28: 401-425
- 76 Vonsattel JP, Myers RH, Stevens TJ et al. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985; 44: 559-577
- 77 Georgiou-Karistianis N, Scahill R, Tabrizi SJ et al. Structural MRI in Huntington’s disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev 2013; 37: 480-490
- 78 Aylward EH, Li Q, Stine OC et al. Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 1997; 48: 394-399
- 79 Aylward EH, Anderson NB, Bylsma FW et al. Frontal lobe volume in patients with Huntington’s disease. Neurology 1998; 50: 252-258
- 80 Nopoulos PC, Aylward EH, Ross CA et al. Cerebral cortex structure in prodromal Huntington disease. Neurobiol Dis 2010; 40: 544-554
- 81 Rosas HD, Salat DH, Lee SY et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 2008; 131: 1057-1068
- 82 Kassubek J, Bernhard Landwehrmeyer G, Ecker D et al. Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. Neuroreport 2004; 15: 363-365
- 83 Rosas HD, Lee SY, Bender AC et al. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical „disconnection“. Neuroimage 2010; 49: 2995-3004
- 84 Kassubek J, Juengling FD, Ecker D et al. Thalamic atrophy in Huntington’s disease co-varies with cognitive performance: a morphometric MRI analysis. Cereb Cortex 2005; 15: 846-853
- 85 Rosas HD, Hevelone ND, Zaleta AK et al. Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 2005; 65: 745-747
- 86 Kloppel S, Chu C, Tan GC et al. Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease. Neurology 2009; 72: 426-431
- 87 Aylward E, Mills J, Liu D et al. Association between Age and Striatal Volume Stratified by CAG Repeat Length in Prodromal Huntington Disease. PLoS Curr 2011; 3 RRN1235
- 88 Bechtel N, Scahill RI, Rosas HD et al. Tapping linked to function and structure in premanifest and symptomatic Huntington disease. Neurology 2010; 75: 2150-2160
- 89 Scahill RI, Hobbs NZ, Say MJ et al. Clinical impairment in premanifest and early Huntington’s disease is associated with regionally specific atrophy. Hum Brain Mapp 2013; 34: 519-529
- 90 Delmaire C, Dumas EM, Sharman MA et al. The structural correlates of functional deficits in early Huntington’s disease. Hum Brain Mapp 2012; in press
- 91 Dumas EM, van den Bogaard SJ, Ruber ME et al. Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp 2012; 33: 203-212
- 92 Sturrock A, Laule C, Decolongon J et al. Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 2010; 75: 1702-1710
- 93 van den Bogaard SJ, Dumas EM, Milles J et al. Magnetization transfer imaging in premanifest and manifest Huntington disease. Am J Neuroradiol 2012; 33: 884-889
- 94 van den Bogaard SJ, Dumas EM, Hart EP et al. Magnetization transfer imaging in premanifest and manifest Huntington disease: a 2-year follow-up. Am J Neuroradiol 2013; 34: 317-322
- 95 Seibert TM, Majid DS, Aron AR et al. Stability of resting fMRI interregional correlations analyzed in subject-native space: a one-year longitudinal study in healthy adults and premanifest Huntington’s disease. Neuroimage 2012; 59: 2452-2463
- 96 Zimbelman JL, Paulsen JS, Mikos A et al. fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc 2007; 13: 758-769
- 97 Fellows S, Schwarz M, Schaffrath C et al. Disturbances of precision grip in Huntington’s disease. Neurosci Lett 1997; 226: 103-106
- 98 Reilmann R, Kirsten F, Quinn L et al. Objective assessment of progression in Huntington’s disease: a 3-year follow-up study. Neurology 2001; 57: 920-924
- 99 Michell AW, Goodman AO, Silva AH et al. Hand tapping: a simple, reproducible, objective marker of motor dysfunction in Huntington’s disease. J Neurol 2008; 255: 1145-1152
- 100 Saft C, Andrich J, Meisel NM et al. Assessment of complex movements reflects dysfunction in Huntington’s disease. J Neurol 2003; 250: 1469-1474
- 101 Saft C, Andrich J, Meisel NM et al. Assessment of simple movements reflects impairment in Huntington’s disease. Mov Disord 2006; 21: 1208-1212
- 102 Quinn L, Reilmann R, Marder K et al. Altered movement trajectories and force control during object transport in Huntington’s disease. Mov Disord 2001; 16: 469-480
- 103 Smith MA, Brandt J, Shadmehr R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 2000; 403: 544-549
- 104 Reilmann R, Bohlen S, Klopstock T et al. Grasping premanifest Huntington’s disease – shaping new endpoints for new trials. Mov Disord 2010; 25: 2858-2862
- 105 Reilmann R, Bohlen S, Klopstock T et al. Tongue force analysis assesses motor phenotype in premanifest and symptomatic Huntington’s disease. Mov Disord 2010; 25: 2195-2202
- 106 Reilmann R, Bohlen S, Kirsten F et al. Assessment of involuntary choreatic movements in Huntington’s disease – toward objective and quantitative measures. Mov Disord 2011; 26: 2267-2273
- 107 Reilmann R, Rumpf S, Beckmann H et al. Huntington’s disease: objective assessment of posture – a link between motor and functional deficits. Mov Disord 2012; 27: 555-559
- 108 Reilmann R, Bohlen S, Sass C et al. Quantitative motor assessments: potential novel endpoints for clinical trials in pre-manifest and symptomatic Huntington’s disease – 36 months longitudinal results from the multicenter TRACK-HD study. Sixteenth International Congress of Parkinson’s Disease and Movement Disorders. 2012 Late Breaking Abstract
- 109 Reilmann R. Huntington’s disease: towards disease modification – gaps and bridges, facts and opinions. Basal Ganglia 2012; 2: 241-248
- 110 Hinton SC, Paulsen JS, Hoffmann RG et al. Motor timing variability increases in preclinical Huntington’s disease patients as estimated onset of motor symptoms approaches. J Int Neuropsychol Soc 2007; 13: 539-543
- 111 Beglinger LJ, Nopoulos PC, Jorge RE et al. White matter volume and cognitive dysfunction in early Huntington’s disease. Cogn Behav Neurol 2005; 18: 102-107
- 112 Snowden JS, Craufurd D, Thompson J et al. Psychomotor, executive, and memory function in preclinical Huntington’s disease. J Clin Exp Neuropsychol 2002; 24: 133-145
- 113 Beglinger LJ, Langbehn DR, Duff K et al. Probability of obsessive and compulsive symptoms in Huntington’s disease. Biol Psychiatry 2007; 61: 415-418
- 114 Rosas HD, Feigin AS, Hersch SM. Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx 2004; 1: 263-272
- 115 Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 2000; 101: 57-66
- 116 Hennenlotter A, Schroeder U, Erhard P et al. Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington’s disease. Brain 2004; 127: 1446-1453
- 117 Novak MJ, Warren JD, Henley SM et al. Altered brain mechanisms of emotion processing in pre-manifest Huntington’s disease. Brain 2012; 135: 1165-1179
- 118 Wolf RC, Vasic N, Schonfeldt-Lecuona C et al. Cortical dysfunction in patients with Huntington’s disease during working memory performance. Hum Brain Mapp 2009; 30: 327-339
- 119 Saft C, Schuttke A, Beste C et al. fMRI reveals altered auditory processing in manifest and premanifest Huntington’s disease. Neuropsychologia 2008; 46: 1279-1289
- 120 Wolf RC, Gron G, Sambataro F et al. Brain activation and functional connectivity in premanifest Huntington’s disease during states of intrinsic and phasic alertness. Hum Brain Mapp 2012; 33: 2161-2173
- 121 Enzi B, Edel MA, Lissek S et al. Altered ventral striatal activation during reward and punishment processing in premanifest Huntington’s disease: a functional magnetic resonance study. Exp Neurol 2012; 235: 256-264
- 122 Wolf RC, Gron G, Sambataro F et al. Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington’s disease. J Cereb Blood Flow Metab 2011; 31: 1908-1918
- 123 Wolf RC, Sambataro F, Vasic N et al. Default-mode network changes in preclinical Huntington’s disease. Exp Neurol 2012; 237: 191-198
- 124 Saft C, Lissek S, Hoffmann R et al. Mentalizing in preclinical Huntington’s disease: an fMRI study using cartoon picture stories. Brain Imaging Behav 2013; in press
- 125 Wolf RC, Sambataro F, Vasic N et al. Longitudinal functional magnetic resonance imaging of cognition in preclinical Huntington’s disease. Exp Neurol 2011; 231: 214-222
- 126 Nguyen L, Bradshaw JL, Stout JC et al. Electrophysiological measures as potential biomarkers in Huntington’s disease: review and future directions. Brain Res Rev 2010; 64: 177-194
- 127 Beste C, Saft C, Andrich J et al. Error processing in Huntington’s disease. PLoS One 2006; 1: e86
- 128 Beste C, Saft C, Konrad C et al. Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum Brain Mapp 2008; 29: 121-130
- 129 Beste C, Willemssen R, Saft C et al. Error processing in normal aging and in basal ganglia disorders. Neuroscience 2009; 159: 143-149
- 130 Beste C, Saft C, Andrich J et al. Response inhibition in Huntington’s disease – a study using ERPs and sLORETA. Neuropsychologia 2008; 46: 1290-1297
- 131 Beste C, Ness V, Falkenstein M et al. On the role of fronto-striatal neural synchronization processes for response inhibition – evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 2011; 49: 3484-3493
- 132 Beste C, Willemssen R, Saft C et al. Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 2010; 48: 366-373
- 133 Beste C, Saft C, Andrich J et al. Stimulus-response compatibility in Huntington’s disease: a cognitive-neurophysiological analysis. J Neurophysiol 2008; 99: 1213-1223
- 134 Beste C, Konrad C, Saft C et al. Alterations in voluntary movement execution in Huntington’s disease are related to the dominant motor system: evidence from event-related potentials. Exp Neurol 2009; 216: 148-157
- 135 Beste C, Saft C, Andrich J et al. Time processing in Huntington’s disease: a group-control study. PLoS One 2007; 2: e1263
- 136 Wild-Wall N, Willemssen R, Falkenstein M et al. Time estimation in healthy ageing and neurodegenerative basal ganglia disorders. Neurosci Lett 2008; 442: 34-38
- 137 Beste C, Ness V, Lukas C et al. Mechanisms mediating parallel action monitoring in fronto-striatal circuits. Neuroimage 2012; 62: 137-146
- 138 Beste C, Saft C, Yordanova J et al. Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington’s disease?. Neuropsychologia 2007; 45: 2922-2930
- 139 Kuhl DE, Phelps ME, Markham CH et al. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 1982; 12: 425-434
- 140 Saft C, Kosinski CM, Landwehrmeyer GB. Progress in Premanifest and Manifest Diagnostics in Huntington’s Disease. Akt Neurol 2009; 36: 506-523
- 141 Tai YF, Pavese N, Gerhard A et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 2007; 130: 1759-1766
- 142 Pavese N, Gerhard A, Tai YF et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 2006; 66: 1638-1643
- 143 Bjorkqvist M, Petersen A, Nielsen J et al. Cerebrospinal fluid levels of orexin-A are not a clinically useful biomarker for Huntington disease. Clin Genet 2006; 70: 78-79
- 144 Petersen A, Gil J, Maat-Schieman ML et al. Orexin loss in Huntington’s disease. Hum Mol Genet 2005; 14: 39-47
- 145 Bjorkqvist M, Leavitt BR, Nielsen JE et al. Cocaine- and amphetamine-regulated transcript is increased in Huntington disease. Mov Disord 2007; 22: 1952-1954
- 146 Dalrymple A, Wild EJ, Joubert R et al. Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 2007; 6: 2833-2840
- 147 Bjorkqvist M, Wild EJ, Thiele J et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 2008; 205: 1869-1877
- 148 Luthi-Carter R, Hanson SA, Strand AD et al. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum Mol Genet 2002; 11: 1911-1926
- 149 Runne H, Kuhn A, Wild EJ et al. Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proc Natl Acad Sci USA 2007; 104: 14424-14429
- 150 Leoni V, Mariotti C, Tabrizi SJ et al. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain 2008; 131: 2851-2859
- 151 Long JD, Matson WR, Juhl AR et al. 8OHdG as a marker for Huntington disease progression. Neurobiol Dis 2012; 46: 625-634
- 152 Vega GL, Weiner MF, Lipton AM et al. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch Neurol 2003; 60: 510-515
- 153 Hersch SM, Gevorkian S, Marder K et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 2006; 66: 250-252
- 154 Squitieri F, Orobello S, Cannella M et al. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur J Nucl Med Mol Imaging 2009; 36: 1113-1120
- 155 Chen CM, Wu YR, Cheng ML et al. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun 2007; 359: 335-340
- 156 Weiss A, Abramowski D, Bibel M et al. Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington’s disease. Anal Biochem 2009; 395: 8-15
- 157 Mochel F, Charles P, Seguin F et al. Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS One 2007; 2: e647
- 158 Saft C, Zange J, Andrich J et al. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease. Mov Disord 2005; 20: 674-679
- 159 Bossy-Wetzel E, Petrilli A, Knott AB. Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 2008; 31: 609-616
- 160 Unschuld PG, Edden RA, Carass A et al. Brain metabolite alterations and cognitive dysfunction in early Huntington’s disease. Mov Disord 2012; 27: 895-902
- 161 Stuwe SH, Goetze O, Arning L et al. Hepatic mitochondrial dysfunction in Friedreich ataxia. BMC Neurol 2011; 11: 145
- 162 Stüwe SH, Goetze O, Lukas C et al. Hepatic mitochondrial dysfunction in manifest and premanifest Huntington’s Disease. Neurology 2013; in press
- 163 Killoran A, Biglan KM. 8-OHdG: its (limited) potential as a biomarker for Huntington’s disease. Biomark Med 2012; 6: 777-780
- 164 Kommission „Leitlinien“ der Deutschen Gesellschaft für Neurologie (DGN). Leitlinie „Chorea/Morbus Huntington“. http://wwwawmforg/leitlinien/detail/ll/030-028html 2011
- 165 Burgunder JM, Guttman M, Perlman S et al. An International Survey-based Algorithm for the Pharmacologic Treatment of Chorea in Huntington’s Disease. PLoS Curr 2011; 3 RRN1260
- 166 de Yebenes JG, Landwehrmeyer B, Squitieri F et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2011; 10: 1049-1057
- 167 Demeestere J, Vandenberghe W. Experimental surgical therapies for Huntington’s disease. CNS Neurosci Ther 2011; 17: 705-713
- 168 Almqvist EW, Bloch M, Brinkman R et al. A worldwide assessment of the frequency of suicide, suicide attempts, or psychiatric hospitalization after predictive testing for Huntington disease. Am J Hum Genet 1999; 64: 1293-1304
- 169 Di Maio L, Squitieri F, Napolitano G et al. Suicide risk in Huntington’s disease. J Med Genet 1993; 30: 293-295
- 170 Hubers AA, Reedeker N, Giltay EJ et al. Suicidality in Huntington’s disease. J Affect Disord 2012; 136: 550-557
- 171 Paulsen JS, Hoth KF, Nehl C et al. Critical periods of suicide risk in Huntington’s disease. Am J Psychiatry 2005; 162: 725-731
- 172 Bonelli RM, Wenning GK. Pharmacological management of Huntington’s disease: an evidence-based review. Curr Pharm Des 2006; 12: 2701-2720
- 173 Mestre T, Ferreira J, Coelho MM et al. Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev 2009; CD006456
- 174 Doody RS, Gavrilova SI, Sano M et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 2008; 372: 207-215
- 175 HORIZON Investigators of the Huntington Study Group and European Huntington’s Disease Network . A Randomized, Double-blind, Placebo-Controlled Study of Latrepirdine in Patients With Mild to Moderate Huntington Disease. Arch Neurol 2012; 1-9
- 176 Jones RW. Dimebon disappointment. Alzheimers Res Ther 2010; 2: 25
- 177 Hamilton A, Heemskerk AW, Loucas M et al. Oral feeding in Huntington’s disease: a guideline document for speech and language therapists. Neurodegen Dis Manage 2012; 2: 45-53
- 178 Hamilton A, Ferm U, Heemskerk AW et al. Management of speech, language and communication difficulties in Huntington’s disease. Neurodegen Dis Manage 2012; 2: 67-77
- 179 Quinn L, Busse M. on behalf of the European Huntington’s Disease Network Physiotherapy Working Group . Physiotherapy clinical guidelines for Huntington’s disease. Neurodegen Dis Manage 2012; 2: 21-31
- 180 Cook C, Page K, Wagstaff A et al. Development of guidelines for occupational therapy in Huntington’s disease. Neurodegen Dis Manage 2012; 2: 79-87
- 181 Brotherton A, Campos L, Rowell A et al. Nutritional management of individuals with Huntington’s disease: nutritional guidelines. Neurodegen Dis Manage 2012; 2: 33-43
- 182 Boyle CA, Frolander C, Manley G. Providing dental care for patients with Huntington’s disease. Dent Update 2008; 35: 333-336
- 183 Jackowski J, Andrich J, Kappeler H et al. Implant-supported denture in a patient with Huntington’s disease: interdisciplinary aspects. Spec Care Dentist 2001; 21: 15-20
- 184 Hersch SM, Rosas HD. Neuroprotection for Huntington’s disease: ready, set, slow. Neurotherapeutics 2008; 5: 226-236
- 185 Ravikumar B, Rubinsztein DC. Role of autophagy in the clearance of mutant huntingtin: a step towards therapy?. Mol Aspects Med 2006; 27: 520-527
- 186 Williams A, Sarkar S, Cuddon P et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4: 295-305
- 187 Wang Y, Lin F, Qin ZH. The role of post-translational modifications of huntingtin in the pathogenesis of Huntington’s disease. Neurosci Bull 2010; 26: 153-162
- 188 Jeong H, Then F, Melia Jr TJ et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009; 137: 60-72
- 189 Süssmuth SD, Landwehrmeyer GB, Tabrizi SJ et al. A randomized, double-blind, placebo-controlled Phase Ib pharmacodynamic study with Selisistat (SEN0014196) in HD patients. J Neurol Neurosurg Psychiatry 2012; 83: A55
- 190 Boudreau RL, McBride JL, Martins I et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 2009; 17: 1053-1063
- 191 McBride JL, Pitzer MR, Boudreau RL et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 2011; 19: 2152-2162
- 192 Yu D, Pendergraff H, Liu J et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 2012; 150: 895-908
- 193 Lima WF, Prakash TP, Murray HM et al. Single-stranded siRNAs activate RNAi in animals. Cell 2012; 150: 883-894
- 194 Smith RA, Miller TM, Yamanaka K et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006; 116: 2290-2296
- 195 Kordasiewicz HB, Stanek LM, Wancewicz EV et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 2012; 74: 1031-1044
- 196 Tornoe J, Torp M, Jorgensen JR et al. Encapsulated cell-based biodelivery of Meteorin is neuroprotective in the quinolinic acid rat model of neurodegenerative disease. Restor Neurol Neurosci 2012; 30: 225-236
- 197 El-Akabawy G, Rattray I, Johansson SM et al. Implantation of undifferentiated and pre-differentiated human neural stem cells in the R6/2 transgenic mouse model of Huntington’s disease. BMC Neurosci 2012; 13: 97
- 198 Bachoud-Levi AC, Gaura V, Brugieres P et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 2006; 5: 303-309
- 199 HD iPSC . Consortium. Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 2012; 11: 264-278
- 200 Groves M, van Duijn E, Anderson K et al. An International Survey-based Algorithm for the Pharmacologic Treatment of Irritability in Huntington’s Disease. PLoS Curr 2011; 3 RRN1259
- 201 Anderson K, Craufurd D, Edmondson MC et al. An International Survey-based Algorithm for the Pharmacologic Treatment of Obsessive-Compulsive Behaviors in Huntington’s Disease. PLoS Curr 2011; 3 RRN1261