Aktuelle Neurologie 2013; 40(07): 400-407
DOI: 10.1055/s-0033-1347250
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Multiple Sklerose und Epstein-Barr-Virus: Eine aktuelle Übersicht

Multiple Sclerosis and Epstein-Barr Virus: A Current Review
K. Ruprecht
1   Klinik für Neurologie, Charité Campus Mitte und Klinisches und Experimentelles Forschungszentrum für Multiple Sklerose, Charité – Universitätsmedizin Berlin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. September 2013 (online)

Zusammenfassung

Diese Übersichtsarbeit diskutiert die wesentlichen Entwicklungen und Ergebnisse zum Zusammenhang einer Epstein-Barr-Virus (EBV)-Infektion mit der Multiplen Sklerose (MS) aus den vergangenen 5 Jahren. Verschiedene Untersuchungen konnten die praktisch 100%-ige Seroprävalenz von EBV bei Patienten mit MS, das erhöhte MS-Risiko nach einer symptomatischen EBV-Erstinfektion (infek­tiöse Mononukleose), sowie bereits vor klinischem Ausbruch einer MS erhöhte Antikörpertiter gegen bestimmte EBV-Proteine bestätigen. Darüber hinaus spricht insbesondere auch der Nachweis einer Serokonversion initial EBV-seronegativer Personen vor dem klinischen Beginn einer MS dafür, dass EBV einen notwendigen, aber nicht hinreichenden Faktor, für die Entstehung einer MS darstellen könnte. Nach wie vor sind die der Assoziation von EBV und MS zugrundeliegenden biologischen Mechanismen allerdings unbekannt. Derzeit wird unter anderem das Konzept einer Infiltration des Gehirns mit EBV-infizierten Zellen intensiv bearbeitet, wobei die vorliegenden Ergebnisse jedoch kontrovers erscheinen. Diese Arbeit referiert die aktuelle diesbezügliche Datenlage und fasst weitere mögliche Erklärungsmodelle für die Rolle von EBV bei der MS zusammen. Nachdem keines der gegenwärtigen Konzepte den Pathomechanismus von EBV bei der MS suffizient erklärt, verbleibt die Aufklärung dieses Mechanismus eine zentrale Fragestellung, deren Beantwortung zu einem besserem ätiologischem und pathogenetischem Verständnis und davon ausgehend zu möglichen Konsequenzen für die Prävention und Behandlung der MS führen könnte.

Abstract

This review discusses the main developments and results of the past 5 years on the association of Epstein-Barr virus (EBV) infection and multiple sclerosis (MS). Different studies have confirmed the almost 100% EBV seroprevalence in patients with MS, an increased risk of MS following symptomatic primary EBV infection (infectious mononucleosis), and elevated antibody titres against EBV proteins already before the first clinical manifestation of MS. In addition, especially the evidence of seroconversion of initially EBV seronegative persons before the clinical onset of MS likewise suggests that EBV could represent a necessary, but not sufficient, prerequisite for the development of MS. Nevertheless, the biological mechanisms underlying the association of EBV and MS remain unknown. Among other topics, research has focussed on the concept of a CNS infiltration with EBV infected cells, however, the present results concerning this issue appear controversial. This work summarises current data on this and other possible concepts explaining the role of EBV in MS. Since none of these concepts appears to sufficiently explain the pathogenic mechanism of EBV in MS, the unravelling of this mechanism remains a key task which may lead to a better understanding of the aetiology and pathogenesis of MS and may also have consequences for the prevention and treatment of this disease.

 
  • Literatur

  • 1 Ramagopalan SV, Dobson R, Meier UC et al. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol 2010; 9: 727-739
  • 2 Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol 2008; 7: 268-277
  • 3 Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372: 1502-1517
  • 4 Ascherio A, Munger KL. Environmental risk factors for multiple scle­rosis. part I: the role of infection. Ann Neurol 2007; 61: 288-299
  • 5 Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann Neurol 2007; 61: 504-513
  • 6 Handel AE, Giovannoni G, Ebers GC et al. Environmental factors and their timing in adult-onset multiple sclerosis. Nat Rev Neurol 2010; 6: 156-166
  • 7 Ascherio A, Munger KL, Lunemann JD. The initiation and prevention of multiple sclerosis. Nat Rev Neurol 2012; 8: 602-612
  • 8 Ruprecht K. Multiple sclerosis and Epstein-Barr virus: new developments and perspectives. Nervenarzt 2008; 79: 399-407
  • 9 Goodin DS. The causal cascade to multiple sclerosis: a model for MS pathogenesis. PLoS One 2009; 4: e4565
  • 10 Pakpoor J, Disanto G, Gerber JE et al. The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler 2013; 19: 162-166
  • 11 Polman CH, Reingold SC, Edan G et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005; 58: 840-846
  • 12 Deuschle K, Hofmann J, Otto C et al. Are there Epstein-Barr virus seronegative patients with multiple sclerosis?. Mult Scler 2013; 19: 1242-1243
  • 13 Optic Neuritis Study Group . Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol 2008; 65: 727-732
  • 14 Ascherio A, Munger KL, Lennette ET et al. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 2001; 286: 3083-3088
  • 15 Delorenze GN, Munger KL, Lennette ET et al. Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 2006; 63: 839-844
  • 16 Levin LI, Munger KL, Rubertone MV et al. Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 2005; 293: 2496-2500
  • 17 Sundstrom P, Juto P, Wadell G et al. An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study. Neurology 2004; 62: 2277-2282
  • 18 Munger KL, Levin LI, O'Reilly EJ et al. Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult Scler 2011; 17: 1185-1193
  • 19 Decard BF, von Ahsen N, Grunwald T et al. Low vitamin D and elevated immunoreactivity against Epstein-Barr virus before first clinical manifestation of multiple sclerosis. J Neurol Neurosurg Psychiatry 2012; 83: 1170-1173
  • 20 Levin LI, Munger KL, O’Reilly EJ et al. Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 2010; 67: 824-830
  • 21 Ascherio A, Munger KL. Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol 2010; 5: 271-277
  • 22 Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol 2006; 59: 499-503
  • 23 Nielsen TR, Rostgaard K, Nielsen NM et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol 2007; 64: 72-75
  • 24 Handel AE, Williamson AJ, Disanto G et al. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One 2010; 5
  • 25 Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347: 911-920
  • 26 Lunemann JD, Tintore M, Messmer B et al. Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann Neurol 2010; 67: 159-169
  • 27 Horakova D, Zivadinov R, Weinstock-Guttman B et al. Environmental Factors Associated with Disease Progression after the First Demyelinating Event: Results from the Multi-Center SET Study. PLoS One 2013; 8: e53996
  • 28 Zivadinov R, Zorzon M, Weinstock-Guttman B et al. Epstein-Barr virus is associated with grey matter atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 2009; 80: 620-625
  • 29 Farrell RA, Antony D, Wall GR et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology 2009; 73: 32-38
  • 30 Ingram G, Bugert JJ, Loveless S et al. Anti-EBNA-1 IgG is not a reliable marker of multiple sclerosis clinical disease activity. Eur J Neurol 2010; 17: 1386-1389
  • 31 Dobson R, Topping J, Giovannoni G. Comparison of two commercial ELISA systems for evaluating anti-EBNA1 IgG titers. J Med Virol 2013; 85: 128-131
  • 32 Pohl D, Krone B, Rostasy K et al. High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neuology 2006; 67: 2063-2065
  • 33 Sokal EM, Hoppenbrouwers K, Vandermeulen C et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis 2007; 196: 1749-1753
  • 34 Lossius A, Johansen JN, Torkildsen O et al. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis-association and causation. Viruses 2012; 4: 3701-3730
  • 35 Brennan RM, Burrows JM, Bell MJ et al. Strains of Epstein-Barr virus infecting multiple sclerosis patients. Mult Scler 2010; 16: 643-651
  • 36 Lindsey JW, Patel S, Zou J. Epstein-Barr virus genotypes in multiple sclerosis. Acta Neurol Scand 2008; 117: 141-144
  • 37 Simon KC, Yang X, Munger KL et al. EBNA1 and LMP1 variants in multiple sclerosis cases and controls. Acta Neurol Scand 2011; 124: 53-58
  • 38 Santon A, Cristobal E, Aparicio M et al. High frequency of co-infection by Epstein-Barr virus types 1 and 2 in patients with multiple sclerosis. Mult Scler 2011; 17: 1295-1300
  • 39 Munch M, Hvas J, Christensen T et al. A single subtype of Epstein-Barr virus in members of multiple sclerosis clusters. Acta Neurol Scand 1998; 98: 395-399
  • 40 Serafini B, Rosicarelli B, Franciotta D et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 2007; 204: 2899-2912
  • 41 Willis SN, Stadelmann C, Rodig SJ et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 2009; 132: 3318-3328
  • 42 Peferoen LA, Lamers F, Lodder LN et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 2010; 133: e137
  • 43 Sargsyan SA, Shearer AJ, Ritchie AM et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 2010; 74: 1127-1135
  • 44 Hilton DA, Love S, Fletcher A et al. Absence of Epstein-Barr virus RNA in multiple sclerosis as assessed by in situ hybridisation. J Neurol Neurosurg Psychiatry 1994; 57: 975-976
  • 45 Opsahl ML, Kennedy PG. An attempt to investigate the presence of Epstein Barr virus in multiple sclerosis and normal control brain tissue. J Neurol 2007; 254: 425-430
  • 46 Torkildsen O, Stansberg C, Angelskar SM et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol 2010; 20: 720-729
  • 47 Lassmann H, Niedobitek G, Aloisi F et al. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue – report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011; 134: 2772-2786
  • 48 Aloisi F, Serafini B, Magliozzi R et al. Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain 2010; 133: e157
  • 49 Tzartos JS, Khan G, Vossenkamper A et al. Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology 2012; 78: 15-23
  • 50 Serafini B, Severa M, Columba-Cabezas S et al. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J Neuropathol Exp Neurol 2010; 69: 677-693
  • 51 Magliozzi R, Serafini B, Rosicarelli B et al. B-cell enrichment and epstein-barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J Neuropathol Exp Neurol 2012; 72: 29-41
  • 52 Serafini B, Muzio L, Rosicarelli B et al. Radioactive in situ hybridization for Epstein-Barr virus-encoded small RNA supports presence of Epstein-Barr virus in the multiple sclerosis brain. Brain 2013; 136: e233
  • 53 Otto C, Oltmann A, Stein A et al. Intrathecal EBV antibodies are part of the polyspecific immune response in multiple sclerosis. Neurology 2011 76: 1316-1321
  • 54 Pohl D, Rostasy K, Jacobi C et al. Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis. J Neurol 2010; 257: 212-216
  • 55 Jafari N, van Nierop GP, Verjans GM et al. No evidence for intrathecal IgG synthesis to Epstein Barr virus nuclear antigen-1 in multiple sclerosis. J Clin Virol 2010; 49: 26-31
  • 56 Castellazzi M, Tamborino C, Cani A et al. Epstein-Barr virus-specific antibody response in cerebrospinal fluid and serum of patients with multiple sclerosis. Mult Scler 2010; 16: 883-887
  • 57 Rand KH, Houck H, Denslow ND et al. Epstein-Barr virus nuclear antigen-1 (EBNA-1) associated oligoclonal bands in patients with multiple sclerosis. J Neurol Sci 2000; 173: 32-39
  • 58 Hayes CE, Donald Acheson E. A unifying multiple sclerosis etiology linking virus infection, sunlight, and vitamin D, through viral interleukin-10. Med Hypotheses 2008; 71: 85-90
  • 59 Bray PF, Luka J, Culp KW et al. Antibodies against Epstein-Barr nuclear antigen (EBNA) in multiple sclerosis CSF, and two pentapeptide sequence identities between EBNA and myelin basic protein. Neurology 1992; 42: 1798-1804
  • 60 Lang HLE, Jacobsen H, Ikemizu S et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002; 3: 940-943
  • 61 Holmoy T, Kvale EO, Vartdal F. Cerebrospinal fluid CD4+ T cells from a multiple sclerosis patient cross-recognize Epstein-Barr virus and myelin basic protein. J Neurovirol 2004; 10: 278-283
  • 62 Haahr S, Höllsberg P. Multiple sclerosis is linked to Epstein-Barr virus infection. Rev Med Virol 2006; 16: 297-310
  • 63 Lunemann JD, Edwards N, Muraro PA et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 2006; 129: 493-506
  • 64 Lunemann JD, Jelcic I, Roberts S et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med 2008; 205: 1763-1773
  • 65 Jilek S, Schluep M, Meylan P et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 2008; 131: 1712-1721
  • 66 Hollsberg P, Hansen HJ, Haahr S. Altered CD8+ T cell responses to selected Epstein-Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin Exp Immunol 2003; 132: 137-143
  • 67 Gronen F, Ruprecht K, Weissbrich B et al. Frequency analysis of HLA-B7-restricted Epstein-Barr virus-specific cytotoxic T lymphocytes in patients with multiple sclerosis and healthy controls. J Neuroimmunol 2006; 180: 185-192
  • 68 Jaquiery E, Jilek S, Schluep M et al. Intrathecal immune responses to EBV in early MS. Eur J Immunol 2010; 40: 878-887
  • 69 Pender MP, Csurhes PA, Lenarczyk A et al. Decreased T cell reactivity to Epstein-Barr virus infected lymphoblastoid cell lines in multiple sclerosis. J Neurol Neurosurg Psychiatry 2009; 80: 498-505
  • 70 De Jager PL, Simon KC, Munger KL et al. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 2008; 70: 1113-1118
  • 71 Sundstrom P, Nystrom L, Jidell E et al. EBNA-1 reactivity and HLA DRB1*1501 as statistically independent risk factors for multiple sclerosis: a case-control study. Mult Scler 2008; 14: 1120-1122
  • 72 Nielsen TR, Rostgaard K, Askling J et al. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult Scler 2009; 15: 431-436
  • 73 Lucas RM, Ponsonby AL, Dear K et al. Current and past Epstein-Barr virus infection in risk of initial CNS demyelination. Neurology 2011; 77: 371-379