Subscribe to RSS
DOI: 10.1055/s-0033-1356194
Correlation of Contrast-Enhanced Ultrasound with Two Distinct Types of Blood Vessels for the Assessment of Angiogenesis in Lewis Lung Carcinoma
Korrelation zwischen kontrastverstärkter Sonografie und zwei unterschiedlichen Blutgefäß-Typen für die Bewertung der Angiogenese im Lewis-LungenkarzinomPublication History
26 June 2013
27 October 2013
Publication Date:
10 December 2013 (online)
Abstract
Objective: The aim of our study was to evaluate tumor angiogenesis in Lewis lung carcinoma (LLC) of mice using a contrast-enhanced ultrasound (CEUS) examination, and to determine the correlation of contrast-enhanced ultrasonographic parameters with different blood vessel markers of microvessel density (MVD).
Materials and Methods: Subcutaneous Lewis lung carcinomas were established in 25 mice, which were evaluated by contrast-enhanced US using SonoVue (a second-generation US contrast agent). The results were recorded as digital video images and the time-intensity curves and hemodynamic parameters were analyzed. Pathological tumor specimens were obtained just after US examination. Tumor specimens were stained with hematoxylin and eosin (H & E) and expression of CD31 and CD34, the different endothelial cell markers, was determined by immunohistochemical straining. Then the relationship between the CEUS parameters and the level of MVD was analyzed.
Results: Two distinct types of microvessels were identified in Lewis lung carcinoma: differentiated (CD34 +) and undifferentiated (CD31 +) vessels. A significant correlation was found between CEUS parameters and undifferentiated MVD (CD31 + vessels) in LLC (P < 0.05). There was a reverse correlation between the different MVDs.
Conclusion: The study showed that among the distinct types of vasculature (CD31 + and CD34 +) in Lewis lung carcinoma, the former correlated with the CEUS parameters. Therefore, CEUS using a second-generation US contrast agent may be useful for the evaluation of tumor angiogenesis of LLC of mice.
Zusammenfassung
Ziel: Studienziel war die Beurteilung der Tumorangiogenese im Lewis-Lungenkarzinom (LLC) von Mäusen unter Verwendung von kontrastverstärktem Ultraschall (CEUS) sowie die Untersuchung, ob CEUS-Parameter mit den verschiedenen Blutgefäßmarkern der Kapillardichte (MVD) korrelieren.
Material und Methoden: Subkutane Lewis-Lungenkarzinome wurden in 25 Mäusen erzeugt und mittels CEUS unter Verwendung von SonoVue (einem US-Kontrastmittel der zweiten Generation) bewertet. Die Ergebnisse wurden als digitale Videobilder aufgenommen und die Zeit-Intensitätskurven sowie hämodynamische Parameter analysiert. Die Tumorpräparate wurden mit Hämatoxylin und Eosin (HE) gefärbt und die Expression der Endothelzellmarker CD31 und CD34 immunhistologisch untersucht. Die Beziehung zwischen den CEUS-Parametern und dem Grad der MVD wurde analysiert.
Ergebnisse: Zwei unterschiedliche Kapillartypen wurden im Lewis-Lungenkarzinom nachgewiesen: Differenzierte (CD34 +) und undifferenzierte (CD31 +)-Gefäße. Ein signifikanter Zusammenhang wurde im LLC zwischen den CEUS-Parametern und den nicht-differenzierten MVDs (CD31 +-Gefäße) gefunden (P < 0,05). Zwischen den verschiedenen MVDs gab es eine umgekehrte Korrelation.
Schlussfolgerung: Die Studie zeigte, dass im Lewis-Lungenkarzinom im Mausmodell beide Typen des Gefäßsystems (CD31 + und CD34 +) der CD31 + Marker mit den CEUS-Parametern korrelierte. Deshalb kann CEUS mit einem Kontrastmittel der zweiten Generation zur Beurteilung der Tumorangiogenese des LLC im Mausmodell genutzt werden.
-
References
- 1 Brown LF, Berse B, Jackman RW et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995; 26: 86-91
- 2 Wang Z, Tang J, An L et al. Contrast-enhanced ultrasonography for assessment of tumor vascularity in hepatocellular carcinoma. J Ultrasound Med 2007; 26: 757-762
- 3 Wang B, Gao ZQ, Yan X. Correlative study of angiogenesis and dynamic contrast-enhanced magnetic resonance imaging features of hepatocellular carcinoma. Acta Radiol 2005; 46: 353-358
- 4 Li WW. Tumor angiogenesis: molecular pathology, therapeutic targeting, and imaging. Acad Radiol 2000; 7: 800-811
- 5 Meyerowitz CB, Fleischer AC, Pickens DR et al. Quantification of tumor vascularity and flow with amplitude color Doppler sonography in an experimental model: preliminary results. J Ultrasound Med 1996; 15: 827-833
- 6 Wilson SR, Burns PN, Muradali D et al. Harmonic hepatic US with microbubble contrast agent: initial experience showing improved characterization of hemangioma, hepatocellular carcinoma, and metastasis. Radiology 2000; 215: 153-161
- 7 Masaki T, Ohkawa S, Amano A et al. Noninvasive assessment of tumor vascularity by contrast-enhanced ultrasonography and the prognosis of patients with nonresectable pancreatic carcinoma. Cancer 2005; 103: 1026-1035
- 8 Poblet E, Gonzalez-Palacios F, Jimenez FJ. Different immunoreactivity of endothelial markers in well and poorly differentiated areas of angiosarcomas. Virchows Arch 1996; 428: 217-221
- 9 Bertram JS, Janik P. Establishment of a cloned line of Lewis Lung Carcinoma cells adapted to cell culture. Cancer Lett 1980; 11: 63-73
- 10 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27-31
- 11 Kiessling F, Krix M, Heilmann M et al. Comparing dynamic parameters of tumor vascularization in nude mice revealed by magnetic resonance imaging and contrast-enhanced intermittent power Doppler sonography. Invest Radiol 2003; 38: 516-524
- 12 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-257
- 13 Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis 2000; 21: 505-515
- 14 Fox SB, Gasparini G, Harris AL. Angiogenesis: pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs. Lancet Oncol 2001; 2: 278-289
- 15 Fleischer AC. Sonographic depiction of tumor vascularity and flow: from in vivo models to clinical applications. J Ultrasound Med 2000; 19: 55-61
- 16 Goertz DE, Yu JL, Kerbel RS et al. High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 2002; 62: 6371-6375
- 17 Gee MS, Saunders HM, Lee JC et al. Doppler ultrasound imaging detects changes in tumor perfusion during antivascular therapy associated with vascular anatomic alterations. Cancer Res 2001; 61: 2974-2982
- 18 Ko EY, Lee SH, Kim HH et al. Evaluation of tumor angiogenesis with a second-generation US contrast medium in a rat breast tumor model. Korean J Radiol 2008; 9: 243-249
- 19 Kim EA, Yoon KH, Lee YH et al. Focal hepatic lesions: contrast-enhancement patterns at pulse-inversion harmonic US using a microbubble contrast agent. Korean J Radiol 2003; 4: 224-233
- 20 Schneider M, Arditi M, Barrau MB et al. BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 1995; 30: 451-457
- 21 Weidner N, Folkman J, Pozza F et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992; 84: 1875-1887
- 22 Bosari S, Lee AK, DeLellis RA et al. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 1992; 23: 755-761
- 23 Toi M, Bando H, Kuroi K. The predictive value of angiogenesis for adjuvant therapy in breast cancer. Breast Cancer 2000; 7: 311-314
- 24 Anastassiou G, Duensing S, Steinhoff G et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1): a potential prognostic marker involved in leukocyte infiltration of renal cell carcinoma. Oncology 1996; 53: 127-132
- 25 Imao T, Egawa M, Takashima H et al. Inverse correlation of microvessel density with metastasis and prognosis in renal cell carcinoma. Int J Urol 2004; 11: 948-953
- 26 Marshall FF. Clinical significance of cell proliferation, microvessel density, and CD44 adhesion molecule expression in renal cell carcinoma. J Urol 2003; 170: 694