RSS-Feed abonnieren
DOI: 10.1055/s-0034-1366288
Comparison of Cancer Yields and Diagnostic Performance of Screening Mammography vs. Supplemental Screening Ultrasound in 4394 Women with Average Risk for Breast Cancer
Vergleich der Krebsausbeuten und des diagnostischen Werts von Mammografie- und Mammasonografie-Screening bei 4394 Frauen ohne erhöhtes BrustkrebsrisikoPublikationsverlauf
03. Mai 2013
05. Februar 2014
Publikationsdatum:
24. April 2014 (online)
Abstract
Purpose: The effectiveness of supplemental screening ultrasound (US) was investigated in women ≥ 40 years at average risk for breast cancer regardless of breast parenchymal density. A total of 4394 women at average risk and having previously undergone screening mammography were classified as the mammography group.
Materials and Methods: Of 4394 women, 2005 underwent screening US after a final assessment of category 1 or 2 on screening mammography, and were categorized as the US group. Category 0, 4, and 5 on mammography and 3, 4, and 5 on US were defined as positive. The cancer yields per 1000 women and diagnostic performance of two groups were compared.
Results: The total cancer and invasive cancer yields for the mammography group were 3.0 (95 % confidence interval 1.6, 5.1) and 2.0 (95 % CI, 0.9, 3.9) per 1000 women, higher than the US values of 2.0 (0.5, 5.1) and 1.0 (0.1, 3.6), not statistically significant. The specificity, accuracy, and positive predictive value (PPV) for mammography were 88.90 % (87.93, 89.81), 88.85 % (87.88, 89.76), and 2.61 % (1.39, 4.41), significantly higher than the US values of 69.07 % (66.99, 71.09), 69.13 % (67.05, 71.15), and 0.64 % (0.18, 1.64). The short-term follow-up rate of mammography was 5.51 % (4.85, 6.22), significantly lower than the rate of 26.58 (24.66, 28.58) for US.
Conclusion: Supplemental screening US in mammographically negative breasts can find additional carcinomas in women at average risk but is not as effective as screening mammography because of the lower cancer yield, invasive cancer yield, specificity, accuracy, PPV and a high short-term follow-up rate.
Zusammenfassung
Ziel: Die Leistungsfähigkeit des ergänzenden Mammasonografie-Screenings (US) wurde in Frauen ≥ 40 Jahre mit durchschnittlichem Brustkrebsrisiko ohne Berücksichtigung der Dichte des Brustparenchyms ermittelt. Insgesamt 4394 Frauen mit Durchschnittsrisiko und durchgeführtem Mammografie-Screening wurden als Mammografie-Gruppe eingestuft.
Material und Methoden: Bei 2005 der 4394 Frauen wurde nach Endbewertung 1 oder 2 in der Mammografie ein Sonografie-Screening durchgeführt und als US-Gruppe bezeichnet. Die Mammografie-Kategorien 0, 4 und 5 sowie die sonografischen Kategorien 3, 4 und 5 wurden als positiv definiert. Die Krebsausbeute pro 1000 Frauen und der diagnostische Wert beider Gruppen wurden miteinander verglichen.
Ergebnisse: In der Mammografie-Gruppe betrug die Ausbeute an Gesamtkrebserkrankungen 3,0 (95 % Konfidenzinterval: 1,6 – 5,1) und an invasiven Karzinomen 2,0 (95 % CI: 0,9 – 3,9) pro 1000 Frauen und war somit höher als in der US-Gruppe mit 2,0 (0,5 – 5,1) für die Gesamtkrebserkrankungen und 1,0 (0,1 – 3,6) für invasive Karzinome. Dieser Unterschied war statistisch nicht signifikant. Die Mammografie erzielte eine Spezifität von 88,90 % (87,93 – 89,81), eine diagnostische Genauigkeit von 88,85 % (87,88 – 89,76) und einen positiven Vorhersagewert (PPV) von 2,61 % (1,39 – 4,41). Dies war signifikant höher als bei der Sonografie, die eine Spezifität von 69,07 % (66,99 – 71,09), eine Genauigkeit von 69,13 % (67,05 – 71,15) und einen PPV 0,64 % (0,18 – 1,64) erreichte. In der Mammografie betrug die Rate für Kurzzeit-Follow-up 5,51 % (4,85 – 6,22) und war somit signifikant niedriger als beim US mit 26,58 (24,66 – 28,58).
Schlussfolgerung: Bei Frauen mit durchschnittlichem Risiko kann das ergänzende Mammasonografie-Screening bei negativem Befund in der Mammografie zusätzliche Karzinome entdecken. Es ist aber nicht so effektiv wie das Mammografie-Screening wegen der geringeren Ausbeute an Krebsbefunden und invasiven Karzinomen, der niedrigeren Spezifität, Genauigkeit und PPV sowie der höheren Kurzzeit-Follow-up Rate.
-
References
- 1 Berry DA, Cronin KA, Plevritis SK et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 2005; 353: 1784-1792
- 2 Blamey RW, Ellis IO, Pinder SE et al. Survival of invasive breast cancer according to the Nottingham Prognostic Index in cases diagnosed in 1990–1999. Eur J Cancer 2007; 43: 1548-1555
- 3 Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687-1717
- 4 Gotzsche PC, Nielsen M. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2009; CD001877
- 5 Humphrey LL, Helfand M, Chan BK et al. Breast cancer screening: a summary of the evidence for the U. S. Preventive Services Task Force. Ann Intern Med 2002; 137: 347-360
- 6 Independent UKPoBCS. The benefits and harms of breast cancer screening: an independent review. Lancet 2012; 380: 1778-1786
- 7 Jorgensen KJ, Keen JD, Gotzsche PC. Is mammographic screening justifiable considering its substantial overdiagnosis rate and minor effect on mortality?. Radiology 2011; 260: 621-627
- 8 Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27825 patient evaluations. Radiology 2002; 225: 165-175
- 9 Mandelson MT, Oestreicher N, Porter PL et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 2000; 92: 1081-1087
- 10 Tabar L, Vitak B, Chen HH et al. The Swedish Two-County Trial twenty years later. Updated mortality results and new insights from long-term follow-up. Radiol Clin North Am 2000; 38: 625-651
- 11 Boyd NF, Guo H, Martin LJ et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007; 356: 227-236
- 12 Berg WA. Beyond standard mammographic screening: mammography at age extremes, ultrasound, and MR imaging. Radiol Clin North Am 2007; 45: 895-906, vii
- 13 Berg WA, Blume JD, Cormack JB et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 2008; 299: 2151-2163
- 14 Buchberger W, Niehoff A, Obrist P et al. Clinically and mammographically occult breast lesions: detection and classification with high-resolution sonography. Semin Ultrasound CT MR 2000; 21: 325-336
- 15 Corsetti V, Ferrari A, Ghirardi M et al. Role of ultrasonography in detecting mammographically occult breast carcinoma in women with dense breasts. Radiol Med 2006; 111: 440-448
- 16 Crystal P, Strano SD, Shcharynski S et al. Using sonography to screen women with mammographically dense breasts. Am J Roentgenol Am J Roentgenol 2003; 181: 177-182
- 17 Leconte I, Feger C, Galant C et al. Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density. Am J Roentgenol Am J Roentgenol 2003; 180: 1675-1679
- 18 Lehman CD, Isaacs C, Schnall MD et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology 2007; 244: 381-388
- 19 Sardanelli F, Podo F, D'Agnolo G et al. Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results. Radiology 2007; 242: 698-715
- 20 Kaplan SS. Clinical utility of bilateral whole-breast US in the evaluation of women with dense breast tissue. Radiology 2001; 221: 641-649
- 21 Kuhl CK, Schrading S, Leutner CC et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 2005; 23: 8469-8476
- 22 Youk JH, Kim EK. Supplementary screening sonography in mammographically dense breast: pros and cons. Korean J Radiol 2010; 11: 589-593
- 23 Duffy SW, Tabar L, Vitak B et al. The relative contributions of screen-detected in situ and invasive breast carcinomas in reducing mortality from the disease. Eur J Cancer 2003; 39: 1755-1760
- 24 Berg WA. Supplemental screening sonography in dense breasts. Radiol Clin North Am 2004; 42: 845-851 , vi
- 25 Gordon PB, Goldenberg SL. Malignant breast masses detected only by ultrasound. A retrospective review. Cancer 1995; 76: 626-630
- 26 Tabar L, Tot T, Dean P. Early detection of breast cancer: large-section and subgross thick-section histologic correlation with mammographic appearances. Radiographics 2007; 27: S5-S35
- 27 American College of Radiology. Breast imaging reporting and data system. Reston. VA: 2003
- 28 http://www.acrin.org/TabID/153/Default.aspx
- 29 Baum JK, Hanna LG, Acharyya S et al. Use of BI-RADS 3-probably benign category in the American College of Radiology Imaging Network Digital Mammographic Imaging Screening Trial. Radiology 2011; 260: 61-67
- 30 Leung JW, Sickles EA. The probably benign assessment. Radiol Clin North Am 2007; 45: 773-789, vi
- 31 Sickles EA. Periodic mammographic follow-up of probably benign lesions: results in 3184 consecutive cases. Radiology 1991; 179: 463-468
- 32 Sickles EA. Management of probably benign breast lesions. Radiol Clin North Am 1995; 33: 1123-1130
- 33 Sickles EA. Probably benign breast lesions: when should follow-up be recommended and what is the optimal follow-up protocol?. Radiology 1999; 213: 11-14
- 34 Varas X, Leborgne JH, Leborgne F et al. Revisiting the mammographic follow-up of BI-RADS category 3 lesions. Am J Roentgenol Am J Roentgenol 2002; 179: 691-695
- 35 Berg WA, Zhang Z, Lehrer D et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 2012; 307: 1394-1404
- 36 Moon HJ, Kim EK, Kwak JY et al. Interval growth of probably benign breast lesions on follow-up ultrasound: how can these be managed?. Eur Radiol 2011; 21: 908-918
- 37 Rosenberg RD, Yankaskas BC, Abraham LA et al. Performance benchmarks for screening mammography. Radiology 2006; 241: 55-66
- 38 Efron B, Tibshirani R. An introsuction of the Bootstrap. NY: Champman and Hall; 1993
- 39 Pisano ED, Gatsonis C, Hendrick E et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 2005; 353: 1773-1783
- 40 Kolb TM, Lichy J, Newhouse JH. Occult cancer in women with dense breasts: detection with screening US--diagnostic yield and tumor characteristics. Radiology 1998; 207: 191-199
- 41 Hamy AS, Giacchetti S, Albiter M et al. BI-RADS categorisation of 2708 consecutive nonpalpable breast lesions in patients referred to a dedicated breast care unit. Eur Radiol 2012; 22: 9-17
- 42 Monticciolo DL, Caplan LS. The American College of Radiology's BI-RADS 3 Classification in a Nationwide Screening Program: current assessment and comparison with earlier use. Breast J 2004; 10: 106-110
- 43 Kuhl CK. The "coming of age" of nonmammographic screening for breast cancer. JAMA 2008; 299: 2203-2205
- 44 Kim SJ, Chang JM, Cho N et al. Outcome of breast lesions detected at screening ultrasonography. Eur J Radiol 2012; 81: 3229-3233
- 45 Lehman CD, Gatsonis C, Kuhl CK et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 2007; 356: 1295-1303
- 46 Hooley RJ, Greenberg KL, Stackhouse RM et al. Screening US in Patients with Mammographically Dense Breasts: Initial Experience with Connecticut Public Act 09–41. Radiology 2012; 265: 59-69