Aktuelle Ernährungsmedizin 2014; 39(02): 117-126
DOI: 10.1055/s-0034-1369884
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Ernährungstherapie bei Kachexie und Sarkopenie

Nutritional Therapy for Cachexia and Sarcopenia
M. Noreik
Oxford Brookes University
› Author Affiliations
Further Information

Publication History

Publication Date:
11 April 2014 (online)

Zusammenfassung

Im Gegensatz zur Erforschung der Behandlungsmöglichkeiten bei einer Kachexie ist das wissenschaftliche Interesse an der Entstehung und Behandlung einer Sarkopenie relativ jung. Neben Sport und einer medikamentösen Behandlung sind verschiedene ernährungstherapeutische Interventionen Schwerpunkt der Forschung auf dem Gebiet der Prävention und Therapie von Kachexie und Sarkopenie. Ziel dieser Übersichtsarbeit ist es, einen Einblick in die aktuelle Forschung in der Ernährungstherapie von Kachexie und Sarkopenie zu geben. In der ernährungstherapeutischen Prävention und Therapie der Kachexie stehen die Faktoren Energie- und Proteinbedarf bzw. Maßnahmen, diese zu decken, sowie die Supplementierung von n-3-Fettsäuren und L-Carnitin zur Diskussion. Im Bereich der Sarkopenie liegt der Schwerpunkt der Forschung auf einer Supplementierung von Proteinen und Aminosäuren, Antioxidanzien und n-3-Fettsäuren, Vitamin D und dem Effekt einer Kalorienrestriktion. Die aktuelle Studienlage zum Effekt verschiedener Nährstoffe, besonders in Bezug auf die Supplementierung von n-3-Fettsäuren, ist vielversprechend. Um eine allgemeingültige Empfehlung zur Supplementierung geben zu können, werden jedoch mehr hochwertige Langzeitstudien benötigt. Bis dahin sollte der Betreuungsschwerpunkt auf der Prävention bzw. einer frühzeitigen Diagnosestellung einer Kachexie/Sarkopenie liegen. Hierfür stellt die Verlaufskontrolle des Ernährungszustands eine wichtige Basis dar und ermöglicht eine frühzeitige Intervention. Behebbare Hemmnisse in der Nahrungsaufnahme sollten festgestellt und behandelt werden, sodass eine ausreichende Zufuhr an Makro- und Mikronährstoffen, mit einer besonderen Aufmerksamkeit auf die bedarfsdeckende Proteinzufuhr, sichergestellt werden kann.

Abstract

Compared to research in treatments for cachexia, the interest in the development and treatment of sarcopenia is relatively new. Besides exercise and medical treatment, research in the field of prevention and therapy of cachexia and sarcopenia focuses on different nutritional interventions. The aim of this review is to give insight into recent research in the field of nutritional therapy for cachexia and sarcopenia. Energy and protein requirements and interventions to meet these requirements, as well as the supplementation of omega-3 fatty acids and L-carnitine are currently being discussed for prevention and therapy of cachexia. For sarcopenia, the supplementation of proteins and amino acids, antioxidants and omega-3 fatty acids, vitamin D, and the positive effect of a caloric restriction are under investigation. Recent results on the effect of different nutrients, especially about the supplementation with omega-3-fatty acids, are promising. To be able to make general recommendations for supplementation further high-quality long-term studies are necessary. In the meantime, emphasis should be placed on prevention and early diagnosis of cachexia and sarcopenia. Monitoring the nutritional status is an important factor to enable an early intervention in the care of persons at risk of or with cachexia/sarcopenia. Barriers in nutritional intake should be diagnosed and treated to enable a sufficient intake of macro- and micronutrients, with particular attention to a sufficient protein intake.

 
  • Literatur

  • 1 Muscaritoli M, Anker SD, Argilés J et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010; 29: 154-159
  • 2 Morley JE, Thomas DR, Wilson MMG. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 2006; 83: 735-743
  • 3 Fearon K, Strasser F, Anker SD et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12: 489-495
  • 4 Rosenberg IH. Sarcopenia: Origins and Clinical Relevance. J Nutr 1997; 127: 990-991
  • 5 Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing 2010; 39: 412-423
  • 6 Roubenoff R. Origins and clinical relevance of sarcopenia. Can J Appl Physiol 2001; 26: 78-89
  • 7 Valentini L, Volkert D, Schütz T et al. Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin: DGEM-Terminologie in der Klinischen Ernährung. Aktuel Ernahrungsmed 2013; 38: 97-111
  • 8 Fried LP. Frailty in Older Adults: Evidence for a Phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: 146-156
  • 9 Kotler D. Cachexia. Ann Intern Med 2000; 133: 622-634
  • 10 Teunissen SC, Wesker W, Kruitwagen C et al. Symptom prevalence in patients with incurable cancer: a systematic review. J Pain Symptom Manage 2007; 34: 94-104
  • 11 Fearon KC, Preston T. Body composition in cancer cachexia. Infusionstherapie 1990; 3: 63-66
  • 12 Bozzetti F, Arends J, Lundholm K et al. ESPEN Guidelines on Parenteral Nutrition: non-surgicaloncology. Clinical Nutrition 2009; 28: 445-454
  • 13 Evans WJ, Morley JE, Argilés J et al. Cachexia: a new definition. Clin Nutr 2008; 28: 793-799
  • 14 Arends J, Bodoky G, Bozzetti F et al. ESPEN (European Society for Parenteral and Enteral Nutrition). ESPEN Guidelines on Enteral Nutrition: Non-surgical oncology. Clin Nutr 2006; 25: 245-259
  • 15 Gallagher IJ, Stephens NA, MacDonald AJ et al. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clinical Cancer Research 2012; 18: 2817-2827
  • 16 Hauser CA, Stockler MR, Tattersall MH. Prognostic factors in patients with recently diagnosed incurable cancer: a systematic review. Sup-portive Care in Cancer 2006; 14: 101-999
  • 17 Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutrition Journal 2010; 22: 69
  • 18 Di Fiore F, Lecleire S, Pop D et al. Baseline nutritional status is predictive of response to treatment and survival in patients treated by definitive chemoradiotherapy for a locally advanced esophageal cancer. American Journal of Gastroenterology 2007; 102: 2557-2563
  • 19 Baldwin C, Spiro A, Ahern R et al. Oral nutritional interventions in malnourished patients with cancer: a systematic review and meta-analysis. J Natl Cancer Inst 2012; 104: 371-385
  • 20 Ravasco P, Monteiro Grillo I, Camilo M. Cancer wasting and quality of life react to early individualized nutritional counselling!. Clin Nutr 2007; 26: 7-15
  • 21 Arends J. Ernährung von Tumorpatienten. Aktuel Ernahrungsmed 2012; 37: 91-106
  • 22 Calixto-Lima L, de Andrade EM, Gomes AP et al. Dietetic management in gastrointestinal complications from antimalignant chemotherapy. Nutr Hosp 2012; 27: 65-75
  • 23 August DA, Huhmann MB. A.S.P.E.N. clinical guidelines: nutrition support therapy during adult anticancer treatment and in hematopoietic cell transplantation. J Parenter Enteral Nutr 2009; 33: 472-500
  • 24 Wagner PD. Possible mechanisms underlying the development of cachexia in COPD. Eur Respir J 2008; 31: 492-501
  • 25 Landi F, Pistelli R, Abbatecola AM et al. Common geriatric conditions and disabilities in older persons with chronic obstructive pulmonary disease. Curr Opin Pulm Med 2011; 17: 29-34
  • 26 Ferreira IM, Brooks D, White J et al. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 12 CD000998
  • 27 Collins PF, Stratton RJ, Elia M. Nutritional support in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Am J Clin Nutr 2012; 95: 1385-1395
  • 28 Vermeeren MAP, Wouters EF, Nelissen LH et al. Acute effects of different nutritional supplements on symptoms and functional capacity in patients with chronic obstructive pulmonary disease. Am J Clin Nutr 2001; 73: 295-301
  • 29 Anker SD, John M, Pedersen PU et al. ESPEN Guidelines on Enteral Nutrition: Cardiology and pulmonology. Clin Nutr 2006; 25: 311-318
  • 30 Poehlman ET, Scheffers J, Gottlieb SS et al. Increased resting metabolic rate in patients with congestive heart failure. Ann Intern Med 1994; 121: 860-862
  • 31 Toth MJ, Gottlieb SS, Goran MI et al. Daily energy expenditure in free-living heart failure patients. Am J Physiol 1997; 272 (3 Pt 1) E469-475
  • 32 Sandek A, Rauchhaus M, Anker SD et al. The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care 2008; 11: 632-639
  • 33 Kraai IH, Luttik ML, Johansson P et al. Health-related quality of life and anemia in hospitalized patients with heart failure. Int J Cardiol 2012; 161: 151-155
  • 34 Wooley JA. Characteristics of thiamin and its relevance to the management of heart failure. Nutr Clin Pract 2008; 23: 412-418
  • 35 Krim SR, Campbell P, Lavie CJ et al. Micronutrients in chronic heart failure. Curr Heart Fail Rep 2013; 10: 46-53
  • 36 Vaziri ND, Norris K. Lipid Disorders and Their Relevance to Outcomes in Chronic Kidney Disease. Blood Purif 2011; 31: 189-196
  • 37 Fouque D, Kalantar-Zadeh K, Kopple J et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 2008; 73: 391-398
  • 38 Druml W, Kuhlmann M, Mann H et al. DGEM-Leitlinie enterale Ernährung: Nephrologie. Aktuel Ernahrungsmed 2003; 28: 93-102
  • 39 Murphy RA, Mourtzakis M, Mazurak VC. n-3 polyunsaturated fatty acids: the potential role for supplementation in cancer. Curr Opin Clin Nutr Metab Care 2012; 15: 246-251
  • 40 Laviano A, Rianda S, Molfino A et al. Omega-3 fatty acids in cancer. Curr Opin Clin Nutr Metab Care 2013; 16: 156-161
  • 41 van der Meij BS, van Bokhorst-de van der Schueren MA, Langius JA. n-3 PUFAs in cancer, surgery, and critical care: a systematic review on clinical effects, incorporation, and washout of oral or enteral compared with parenteral supplementation. American Journal of Clinical Nutrition 2011; 94: 1248-1265
  • 42 Mazotta P, Jeney CM. Anorexia-Cachexia Syndrome: A Systematic Review of the Role of Dietary Polyunsaturated Fatty Acids in the Management of Symptoms, Survival, and Quality of Life. J Pain Symptom Manage 2009; 37: 1069-1077
  • 43 Dewey A, Baughan C, Dean T et al. Eicosapentaenoic acid (EPA), an omega-3-fatty acid from fish oils for the treatment of cancer cachexia (Cochrane Review). The Cochrane Library, 2007; (02)
  • 44 Ries A, Trottenberg P, Elsner F et al. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med 2012; 26: 294-304
  • 45 Stanley WC, Dabkowski ER, Ribeiro Jr RF et al. Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res 2012; 110: 764-776
  • 46 Kalantar-Zadeh K, Anker SD, Horwich TB et al. Nutritional and Anti-Inflammatory Interventions in Chronic Heart Failure. Am J Cardiol 2008; 101: 89-103
  • 47 Giudetti AM, Cagnazzo R. Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins Other Lipid Mediat 2012; 99: 57-67
  • 48 Schubert R, Kitz R, Beermann C et al. Effect of n-3 polyunsaturated fatty acids in asthma after low-dose allergen challenge. Int Arch Allergy Immunol 2005; 148: 321-329
  • 49 Matsuyama W, Mitsuyama H, Watanabe M et al. Effects of omega-3 polyunsaturated fatty acids on inflammatory markers in COPD. Chest 2005; 128: 3817-3827
  • 50 Broekhuizen R, Wouters EF, Creutzberg EC et al. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. Thorax 2005; 60: 376-382
  • 51 Olveira G, Olveira C, Acosta E et al. Fatty acid supplements improve respiratory, inflammatory and nutritional parameters in adults with cystic fibrosis. Arch Broncopneumol 2010; 46: 70-77
  • 52 Woods RK, Thien FC, Abramson MJ. Dietary marine fatty acids (fish oil) for asthma in adults and children. Cochrane Database Syst Rev 2002; (03) CD001283
  • 53 Oliver C, Jahnke N. Omega-3 fatty acids for cystic fibrosis. Cochrane Database Syst Rev 2011; (08) CD002201
  • 54 May PE, Barber A, D’Olimpio JT et al. Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am J Surg 2002; 183: 471-479
  • 55 Berk L, James J, Schwartz A et al. RTOG. A randomized, double-blind, placebo-controlled trial of a beta-hydroxylbeta-methylbutyrate, glutamine, and arginine mixture for the treatment of cancer cachexia. Supportive Care in Cancer 2008; 16: 1179-1188
  • 56 Malaguarnera M, Risino C, Gargante MP et al. Decrease of serum carnitine levels in patients with or without gastrointestinal cancer cachexia. World J Gastroenterol 2006; 12: 4541-4545
  • 57 Busquets S, Serpe R, Toledo M et al. l-Carnitine: An adequate supplement for a multi-targeted anti-wasting therapy in cancer. Clin Nutr 2012; 31: 889-895
  • 58 Laviano A, Molfino A, Seelaender M et al. Carnitine administration reduces cytokine levels, improves food intake, and ameliorates body composition in tumor-bearing rats. Cancer Invest 2011; 29: 696-700
  • 59 Macciò A, Madeddu C, Gramignano G et al. A randomized phase III clinical trial of a combined treatment for cachexia in patients with gynecological cancers: evaluating the impact on metabolic and inflammatory profiles and quality of life. Gynecol Oncol 2012; 124: 417-425
  • 60 Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nature Reviews Clinical Oncology 2013; 10: 90-99
  • 61 Laviano A, Seelaender M, Sanchez-Lara K et al. Beyond anorexia-cachexia. Nutrition and modulation of cancer patients’ metabolism: supplementary, complementary or alternative anti-neoplastic therapy?. Eur J Pharmacol 2011; 668: 87-90
  • 62 Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung Hrsg. DACH-Referenzwerte für die Nährstoffzufuhr. 1.. Auflage, 4. korrigierter Nachdruck. Neustadt a. d. Weinstraße: Neuer Umschau Buchverlag; 2012. ISBN: 978-3-86528-128-9
  • 63 Thoresen L, Frykholm G, Lydersen S et al. Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin Nutr 2013; 32: 65-72
  • 64 Roubenoff R. Sarcopenic obesity: the confluence of two epidemics. Obes Res 2004; 12: 887-888
  • 65 Villareal DT, Chode S, Parimi N et al. Weight Loss, Exercise, or Both and Physical Function in Obese Older Adults. N Engl J Med 2011; 364: 1218-1229
  • 66 Parr EB, Coffey VG, Hawley JA. Sarcobesity: a metabolic conodrum. Maturitas 2013; 74: 109-113
  • 67 Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr Rev 2010; 68: 375-388
  • 68 Layman DK, Boileau RA, Erickson DJ et al. A Reduced Ratio of Dietary Carbohydrate to Protein Improves Body Composition and Blood Lipid Profiles during Weight Loss in Adult Women. J Nutr 2003; 133: 411-417
  • 69 Rolland Y, Czerwinski S, Abellan Van Kan G et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 2008; 12: 433-450
  • 70 Newman AB, Lee JS, Visser M et al. Weight change and the conservation of lean mass in old age: the Health, Aging and Body Composition Study. Am J Clin Nutr 2005; 82: 872-878
  • 71 Hébuterne X, Bermon S, Schneider SM. Ageing and muscle: the effects of malnutrition, re-nutrition, and physical exercise. Curr Opin Clin Nutr Metab Care 2001; 4: 295-300
  • 72 Beasley JM, LaCroix AZ, Neuhouser ML et al. J Protein intake and incident frailty in the Women’s Health Initiative observational study. Am Geriatr Soc 2010; 58: 1063-1071
  • 73 Paddon-Jones D, Short KR, Campbell WW et al. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 2008; 87: 1562-1566
  • 74 Campbell WW. Synergistic use of higher-protein diets or nutritional supplements with resistance training to counter sarcopenia. Nutr Rev 2007; 65: 416-422
  • 75 Koopman R. Dietary protein and exercise training in ageing. Proc Nutr Soc 2011; 70: 104-113
  • 76 Breen L, Phillips SM. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr Metab 2011; 8: 68
  • 77 Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia: Protein, amino acid metabolism and therapy. Curr Opin Clin Nutr Metab Care 2009; 12: 86-90
  • 78 Rondanelli M, Opizzi A, Antoniello N et al. Effect of essential amino acid supplementation on quality of life, amino acid profile and strength in institutionalized elderly patients. Clin Nutr 2011; 30: 571-577
  • 79 Leenders M, Verdijk LB, van der Hoeven L et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr 2011; 141: 1070-1076
  • 80 Ferrando AA, Paddon-Jones D, Hays NP et al. EAA supplementation to increase nitrogen intake improves muscle function during bed rest in the elderly. Clin Nutr 2010; 29: 18-23
  • 81 van Loon LJ. Leucine as a pharmaconutrient in health and disease. Curr Opin Clin Nutr Metab Care 2012; 15: 71-77
  • 82 Jensen GL. Inflammation: Roles in Aging and Sarcopenia. JPEN J Parenter Enteral Nutr 2008; 32: 656
  • 83 Kim JS, Wilson JM, Lee SR. Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem 2010; 21: 1-13
  • 84 Meng SJ, Yu LJ. Oxidative Stress, Molecular Inflammation and Sarcopenia. Int J Mol Sci 2010; 11: 1509-1526
  • 85 Kaiser M, Bandinelli S, Lunenfeld B. Frailty and the role of nutrition in older people. A review of the current literature. Acta Biomed 2010; 81: 37-45
  • 86 Alipanah N, Varadhan R, Sun K et al. Low serum carotenoids are associated with a decline in walking speed in older women. J Nutr Health Aging 2009; 13: 170-175
  • 87 Jackson MJ. Strategies for reducing oxidative damage in ageing skeletal muscle. Adv Drug Deliv Rev 2009; 61: 1363-1368
  • 88 Cerullo F, Gambassi G, Cesari M. Rationale for Antioxidant Supplementation in Sarcopenia. J Aging Research 2012; ID316943
  • 89 Fusco D, Colloca G, Lo Monaco MR et al. Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2007; 2: 377-387
  • 90 Doria E, Buonocore D, Focarelli A et al. Relationship between human aging muscle and oxidative system pathway. Oxid Med Cell Longev 2012; 830257
  • 91 Robinson SM, Jameson KA, Batelaan SF et al. Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire Cohort Study. J Am Geriatr Soc 2008; 56: 84-90
  • 92 Smith GI, Atherton P, Reeds DN et al. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. J Clin Nutr 2011; 93: 402-412
  • 93 Rodacki CL, Rodacki AL, Pereira G et al. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr 2012; 95: 428-436
  • 94 Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports 2010; 20: 182-190
  • 95 Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006; 92: 4-8
  • 96 Wilhelm-Leen ER, Hall YN, deBoer IH et al. Vitamin D deficiency and frailty in older Americans. J Intern Med 2010; 268: 171-180
  • 97 Sohl E, de Jongh RT, Heijboer AC et al. Vitamin D status is associated with physical performance: the results of three independent cohorts. Osteoporos Int 2013; 24: 187-196
  • 98 Bischoff-Ferrari HA, Dietrich T, Orav EJ et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. Am J Clin Nutr 2004; 80: 752-758
  • 99 Houston DK, Cesari M, Ferrucci L et al. Association Between Vitamin D Status and Physical Performance: The InCHIANTI Study. J Gerontol A Biol Sci Med Sci 2007; 62: 440-446
  • 100 Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 2009; 339: b3692
  • 101 Annweiler C, Schott AM, Berrut G et al. Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging 2009; 13: 893-898
  • 102 Linseisen J, Bechthold A, Bischoff-Ferrari A et al. DGE Stellungnahme: Vitamin D und Prävention ausgewählter chronischer Krankheiten. Deutsche Gesellschaft für Ernährung e. V.; 2011. http://www.dge.de/pdf/ws/DGE-Stellungnahme-VitD-111220.pdf (zuletzt abgerufen am 12.07.2013)
  • 103 Bischoff-Ferrari HA, Giovannucci E, Willett WC et al. Estimation of optimal serum concentration of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 2006; 84: 18-28
  • 104 Gotshalk LA, Kraemer WJ, Mendonca MA et al. Creatine supplementation improves muscular performance in older women. Eur J Appl Physiol 2008; 102: 223-231
  • 105 Tarnopolsky M, Zimmer A, Paikin J et al. Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS ONE 2007; 2: e991
  • 106 Eijnde BO, Van Leemputte M, Goris M et al. Effects of creatine supplementation and exercise training on fitness in males 55 to 75 years old. J Appl Physiol 2003; 95: 818-828
  • 107 Waters DL, Baumgartner RN, Garry PJ et al. Advantages of dietary, exercise-related, and therapeutic interventions to prevent and treat sarcopenia in adult patients: an update. Clin Interv Aging 2010; 5: 259-270
  • 108 Marzetti E, Lees HA, Wohlgemuth SE et al. Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. Biofactors 2009; 35: 28-35
  • 109 Weindruch R, Walford RL, Fligiel S et al. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 1986; 116: 641-654
  • 110 Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 2006; 127: 1-7
  • 111 Joseph AM, Malamo AG, Silvestre J et al. Short-term caloric restriction, resveratrol, or combined treatment regimens initiated in late-life alter mitochondrial protein expression profiles in a fiber-type specific manner in aged animals. Exp Gerontol 2013; 48: 858-868
  • 112 Mattison JA, Roth GS, Beasley TM et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489: 318-321
  • 113 Forster MJ, Morris P, Sohal RS. Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J 2003; 17: 690-692
  • 114 Malafarina V, Uriz-Otano F, Iniesta R et al. Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: a systematic review. J Am Med Dir Assoc 2013; 14: 10-17