Der Nuklearmediziner 2014; 37(02): 119-131
DOI: 10.1055/s-0034-1376960
CME-Fortbildung
© © Georg Thieme Verlag KG Stuttgart · New York

Zerebrales MRT: Relevante Gesichtspunkte für die Nuklearmedizin im klinischen Umfeld

Cerebral MRI and Neuro-nuclear Medicine: Comparison of Pathological Findings in Clinical Settings
H. Hautzel
1   Nuklearmedizinische Klinik (KME) a.d. Gelände des Forschungszentrum Jülich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
07. Juli 2014 (online)

Zusammenfassung

Die klinisch ausgerichtete Nuklearmedizin wird regelmäßig mit Fragestellungen zu neurologischen Krankheitsbildern konfrontiert. Häufig liegt bereits eine Bildgebung mit Magnetresonanztomografie (MRT) vor, die Hinweise auf die zugrunde liegende Erkrankung, deren Lokalisation oder Ausprägung geben kann. Für eine Indikationsstellung und die spätere Auswertung der korrespondierenden nuklearmedizinischen Befunde kann die Interpretation der MRT hilfreich sein. Zu den Krankheiten, für die die MRT häufig keine abschließende Diagnose liefert, von nuklearmedizinischer Seite aber Untersuchungstechniken zur genauen Differenzierung zur Verfügung stehen, gehören die Fokussuche bei Epilepsie, neurodegenerativ-demenzielle Erkrankungen, neurologisch-motorische Erkrankungen mit Parkinson-Symptomatik und maligne Raumforderungen im Gehirn. Für diese Entitäten werden den typischen Veränderungen in der MRT die nuklearmedizinischen Befunde vergleichend gegenübergestellt und der zusätzliche Informationsgewinn der metabolischen Bildgebung über die MRT hinaus herausgearbeitet. Dabei liegt der Schwerpunkt für die MRT bei den T1-, T2- und FLAIR-Standardsequenzen, in der Nuklearmedizin auf den breit verfügbaren SPECT-Tracern (99mTc-HMPAO, 99mTc-ECD, 123I-FP-CIT, 201Tl) und PET Tracern (18FDG, 18FET).

Abstract

Clinical nuclear medicine is involved in a variety of neurological diseases on a regular daily base. Some patients already underwent magnet resonance imaging (MRI) of the brain before referral. This MRI might indicate a probable underlying disease, its localization or state in terms of sev­erity or extent. The decision for a certain nuclear medicine investigation and its subsequent interpretation might be supported by the exact knowledge of the corresponding MRI results. This overview focuses on those neurological pathologies in which brain MRI is often equivocal, but – in contrast – nuclear medicine provides techniques for establishing a final diagnosis. In particular, epilepsies and the identification of a seizure focus to guide neurosurgery, differentiation of dementia, the neurodegenerative movement disorders Parkinson’s disease and Parkinson-plus-syndromes and malignant brain tumors and brain metastases are discussed. For these entities typical MRI changes are present­ed in concert with the complementary nuclear medicine findings, the latter adding substantial information to the diagnostic workup. To achieve high relevance for the daily clinical diagnostic workflow special emphasis is put on basic MRI sequences like T1, T2 and FLAIR on the one hand and on broadly available SPECT and PET radio­tracers like 99mTc-HMPAO, 99mTc-ECD, 123I-FP-CIT, 201Tl, 18FDG and 18FET on the other.

 
  • Literatur

  • 1 Agosta F, Canu E, Sarro L et al. Neuroimaging findings in frontotemporal lobar degeneration spectrum of disorders. Cortex 2012; 48: 389-413
  • 2 Agosta F, Caso F, Filippi M. Dementia and neuroimaging. J Neurol 2013; 260: 685-691
  • 3 Bajaj N, Hauser RA, Grachev ID. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2013; 84: 1288-1295
  • 4 Bangiyev L, Rossi Espagnet MC, Young R et al. Adult brain tumor imaging: state of the art. Semin Roentgenol 2014; 49: 39-52
  • 5 Bertelson JA, Ajtai B. Neuroimaging of dementia. Neurol Clin 2014; 32: 59-93
  • 6 Bruggemann JM, Som SS, Lawson JA et al. Application of statistical parametric mapping to SPET in the assessment of intractable childhood epilepsy. Eur J Nucl Med Mol Imaging 2004; 31: 369-377
  • 7 Burton EJ, Barber R, Mukaetova-Ladinska EB et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 2009; 132: 195-203
  • 8 Catana C, Drzezga A, Heiss WD et al. PET/MRI for neurologic applications. J Nucl Med 2012; 53: 1916-1925
  • 9 Craven I, Griffiths PD, Hoggard N. Magnetic resonance imaging of epilepsy at 3 Tesla. Clin Radiol 2011; 66: 278-286
  • 10 Donnemiller E, Heilmann J, Wenning GK et al. Brain perfusion scintigraphy with 99mTc-HMPAO or 99mTc-ECD and 123I-beta-CIT single-photon emission tomography in dementia of the Alzheimer-type and diffuse Lewy body disease. Eur J Nucl Med 1997; 24: 320-325
  • 11 Dunet V, Rossier C, Buck A et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 2012; 53: 207-214
  • 12 Gaillard WD, Kopylev L, Weinstein S et al. Low incidence of abnormal (18)FDG-PET in children with new-onset partial epilepsy: a prospective study. Neurology 2002; 58: 717-722
  • 13 Galldiks N, Stoffels G, Filss CP et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 2012; 53: 1367-1374
  • 14 Garibotto V, Heinzer S, Vulliemoz S et al. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 2013; 38: e13-e18
  • 15 Goffin K, Dedeurwaerdere S, Van LK et al. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med 2008; 38: 227-239
  • 16 Hajek M, Antonini A, Leenders KL et al. Mesiobasal versus lateral temporal lobe epilepsy: metabolic differences in the temporal lobe shown by interictal 18F-FDG positron emission tomography. Neurology 1993; 43: 79-86
  • 17 Heiss WD, Zimmermann-Meinzingen S. PET imaging in the differential diagnosis of vascular dementia. J Neurol Sci 2012; 322: 268-273
  • 18 Hellwig S, Amtage F, Kreft A et al. [(1)(8)F]FDG-PET is superior to [(1)(2)(3)I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 2012; 79: 1314-1322
  • 19 Herzog H, Langen KJ, Weirich C et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin 2011; 50: 74-82
  • 20 Hoefnagels FW, Lagerwaard FJ, Sanchez E et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol 2009; 256: 878-887
  • 21 Horimoto Y, Aiba I, Yasuda T et al. Longitudinal MRI study of multiple system atrophy – when do the findings appear, and what is the course?. J Neurol 2002; 249: 847-854
  • 22 Horky LL, Hsiao EM, Weiss SE et al. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol 2011; 103: 137-146
  • 23 Hougaard K, Oikawa T, Sveinsdottir E et al. Regional cerebral blood flow in focal cortical epilepsy. Arch Neurol 1976; 33: 527-535
  • 24 Ishii K, Imamura T, Sasaki M et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease. Neurology 1998; 51: 125-130
  • 25 Jokinen P, Bruck A, Aalto S et al. Impaired cognitive performance in Parkinson’s disease is related to caudate dopaminergic hypofunction and hippocampal atrophy. Parkinsonism Relat Disord 2009; 15: 88-93
  • 26 Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 2010; 9: 1200-1213
  • 27 Kim YK, Lee DS, Lee SK et al. Differential features of metabolic abnormalities between medial and ­lateral temporal lobe epilepsy: quantitative analysis of (18)F-FDG PET using SPM. J Nucl Med 2003; 44: 1006-1012
  • 28 Knowlton RC, Elgavish RA, Bartolucci A et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 2008; 64: 35-41
  • 29 Koch W, Hamann C, Radau PE et al. Does combined imaging of the pre- and postsynaptic dopaminergic system increase the diagnostic accuracy in the differential diagnosis of parkinsonism?. Eur J Nucl Med Mol Imaging 2007; 34: 1265-1273
  • 30 Koedam EL, van der Flier WM, Barkhof F et al. Clinical characteristics of patients with frontotemporal dementia with and without lobar atrophy on MRI. Alzheimer Dis Assoc Disord 2010; 24: 242-247
  • 31 Kumar A, Chugani HT. The role of radionuclide imaging in epilepsy, Part 1: Sporadic temporal and extratemporal lobe epilepsy. J Nucl Med 2013; 54: 1775-1781
  • 32 la Fougere C, Rominger A, Forster S et al. PET and SPECT in epilepsy: a critical review. Epilepsy Behav 2009; 15: 50-55
  • 33 Langen KJ, Bartenstein P, Boecker H et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 2011; 50: 167-173
  • 34 Lee EA, Cho HI, Kim SS et al. Comparison of magnetic resonance imaging in subtypes of multiple system atrophy. Parkinsonism Relat Disord 2004; 10: 363-368
  • 35 Lee EJ, Ahn KJ, Lee EK et al. Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clin Radiol 2013; 68: e689-e697
  • 36 Lee HY, Chung JK, Jeong JM et al. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann Nucl Med 2008; 22: 281-286
  • 37 Lee JD, Kim HJ, Lee BI et al. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy. Eur J Nucl Med 2000; 27: 1658-1665
  • 38 Lobotesis K, Fenwick JD, Phipps A et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology 2001; 56: 643-649
  • 39 Madan N, Grant PE. New directions in clinical imaging of cortical dysplasias. Epilepsia 2009; 50 (Suppl. 09) 9-18
  • 40 Mahlknecht P, Schocke M, Seppi K. Differential diagnosis of parkinsonian syndromes using MRI. Nervenarzt 2010; 81: 1168-1179
  • 41 Manz C, Reimold M, Bender B et al. Imaging diagnosis of Alzheimer’s disease. Rofo 2012; 184: 1079-1082
  • 42 Matsunaga S, Shuto T, Takase H et al. Semiquantitative analysis using thallium-201 SPECT for differential diagnosis between tumor recurrence and radiation necrosis after gamma knife surgery for malignant brain tumors. Int J Radiat Oncol Biol Phys 2013; 85: 47-52
  • 43 Mendez MF, Shapira JS, McMurtray A et al. Accuracy of the clinical evaluation for frontotemporal dementia. Arch Neurol 2007; 64: 830-835
  • 44 Miletich RS. Positron emission tomography for neurologists. Neurol Clin 2009; 27: 61-88 viii
  • 45 Newton MR, Berkovic SF, Austin MC et al. Postictal switch in blood flow distribution and temporal lobe seizures. J Neurol Neurosurg Psychiatry 1992; 55: 891-894
  • 46 Niyazi M, Geisler J, Siefert A et al. FET-PET for malignant glioma treatment planning. Radiother Oncol 2011; 99: 44-48
  • 47 O’Brien TJ, So EL, Mullan BP et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998; 50: 445-454
  • 48 Oba H, Yagishita A, Terada H et al. New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 2005; 64: 2050-2055
  • 49 Pasquier F, Leys D, Weerts JG et al. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol 1996; 36: 268-272
  • 50 Pasquier J, Michel BF, Brenot-Rossi I et al. Value of (99m)Tc-ECD SPET for the diagnosis of dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2002; 29: 1342-1348
  • 51 Pauleit D, Floeth F, Hamacher K et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 52 Piroth MD, Pinkawa M, Holy R et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2011; 80: 176-184
  • 53 Plotkin M, Amthauer H, Klaffke S et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm 2005; 112: 677-692
  • 54 Popperl G, Goldbrunner R, Gildehaus FJ et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-1025
  • 55 Popperl G, Gotz C, Rachinger W et al. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470
  • 56 Popperl G, Kreth FW, Mehrkens JH et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942
  • 57 Roh JH, Qiu A, Seo SW et al. Volume reduction in subcortical regions according to severity of Alzheimer’s disease. J Neurol 2011; 258: 1013-1020
  • 58 Roman G, Pascual B. Contribution of neuroimaging to the diagnosis of Alzheimer’s disease and vascular dementia. Arch Med Res 2012; 43: 671-676
  • 59 Sabattoli F, Boccardi M, Galluzzi S et al. Hippocampal shape differences in dementia with Lewy bodies. Neuroimage 2008; 41: 699-705
  • 60 Scheltens P, Leys D, Barkhof F et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55: 967-972
  • 61 Serizawa T, Saeki N, Higuchi Y et al. Diagnostic value of thallium-201 chloride single-photon emission computerized tomography in differentiating tumor recurrence from radiation injury after gamma knife surgery for metastatic brain tumors. J Neurosurg 2005; 102 Suppl 266-271
  • 62 Shimizu S, Hanyu H, Kanetaka H et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using brain SPECT. Dement Geriatr Cogn Disord 2005; 20: 25-30
  • 63 Sudmeyer M, Antke C, Zizek T et al. Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: a multidimensional statistical approach. J Nucl Med 2011; 52: 733-740
  • 64 Taylor JP, O'Brien J. Neuroimaging of dementia with Lewy bodies. Neuroimaging Clin N Am 2012; 22: 67-81 viii
  • 65 Teune LK, Bartels AL, de Jong BM et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord 2010; 25: 2395-2404
  • 66 Uijl SG, Leijten FS, Arends JB et al. Prognosis after temporal lobe epilepsy surgery: the value of combining predictors. Epilepsia 2008; 49: 1317-1323
  • 67 Vander BT, Asenbaum S, Bartenstein P et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 2006; 33: 1374-1380
  • 68 Varma AR, Talbot PR, Snowden JS et al. A 99mTc-HMPAO single-photon emission computed tomography study of Lewy body disease. J Neurol 1997; 244: 349-359
  • 69 Vermeer SE, Prins ND, den HT et al. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003; 348: 1215-1222
  • 70 Vlaar AM, van Kroonenburgh MJ, Kessels AG et al. Meta-analysis of the literature on diagnostic accuracy of SPECT in parkinsonian syndromes. BMC Neurol 2007; 7: 27
  • 71 Weber DC, Zilli T, Buchegger F et al. [(18)F]Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008; 3: 44
  • 72 Won HJ, Chang KH, Cheon JE et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol 1999; 20: 593-599