Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(13): 1904-1908
DOI: 10.1055/s-0034-1378331
DOI: 10.1055/s-0034-1378331
letter
Synthesis of Mono- and Diaza-‘Pyridones’ via Stille Coupling of Alkoxystannanes
Further Information
Publication History
Received: 02 May 2014
Accepted after revision: 23 May 2014
Publication Date:
08 July 2014 (online)
Abstract
Various alkoxy-substituted heterocyclic stannanes provide access to the corresponding substituted ‘pyridone’ moieties via Stille cross-coupling. Both pyridyl and a series of diazinyl stannanes are prepared, and options for unmasking (via demethylation or debenzylation) of the pyridone unit are evaluated.
-
References and Notes
- 1 Irlapati NR, Adlington RM, Conte A, Pritchard GJ, Marquez R, Baldwin JE. Tetrahedron 2004; 60: 9307
- 2 Mandal D, Yamaguchi AD, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2011; 133: 19660
- 3 Croxtall JD, Keam SJ. Drugs 2009; 69: 1059
- 4 Goodyear MD, Hill ML, West JP, Whitehead AJ. Tetrahedron Lett. 2005; 46: 8535
- 5 Marcaurelle LA, Johannes C, Yohannes D, Tillotson BP, Mann D. Bioorg. Med. Chem. Lett. 2009; 19: 2500
- 6 Rouden J, Lasne M.-C, Blanchet J, Baudoux J. Chem. Rev. 2014; 114: 712
- 7 Honda T, Takahashi R, Namiki H. J. Org. Chem. 2005; 70: 499
- 8 Hirschhäuser C, Haseler CA, Gallagher T. Angew. Chem. Int. Ed. 2011; 50: 5162
- 9 The instability of 2-pyridyl boronic acids and trifluoroborates, and the propensity of electron-deficient boronic acids toward homocoupling have been described, see: Molander GA, Biolatto B. J. Org. Chem. 2003; 68: 4302
- 10a Sandosham J, Undheim K. Tetrahedron 1994; 50: 275
- 10b Sandosham J, Undheim K. Acta Chem. Scand. 1989; 43: 684
- 11 Darabantu M, Boully L, Turck A, Plé N. Tetrahedron 2005; 61: 2897
- 12 Majeed AJ, Antonsen Ø, Benneche T, Undheim K. Tetrahedron 1989; 45: 993
- 13 Fang AG, Mello JV, Finney NS. Org. Lett. 2003; 5: 967
- 14 Grushin V. V.; Organometallics; 2000, 19: 1888; a screen of alternative phosphines [XPhos, PCy3, P(o-Tol)3, P(o-furanyl)] was conducted (using 6a and 4-bromoanisole), but none offered a significant advantage (in % yield) over Ph3P.
- 15 Demers S, Stevenson H, Candler J, Bashore CG, Arnold EP, O’Neill BT, Coe JW. Tetrahedron Lett. 2008; 49: 3368
- 16 Harrison IT. J. Chem. Soc. D 1969; 616a
- 17 Feutrill GI, Mirrington RN. Tetrahedron Lett. 1970; 1327
- 18 Representative 1H NMR Data 2-Methoxy-6-(2-methoxyphenyl)pyridine (19c) 1H NMR (400 MHz, CDCl3): δ = 7.97 (dd, J = 7.5, 2.0 Hz, 1 H), 7.61 (t, J = 7.5 Hz, 1 H), 7.55 (dd, J = 7.5, 1.0 Hz, 1 H), 7.37 (ddd, J = 8.5, 7.0, 1.5 Hz, 1 H), 7.09 (td, J = 7.5, 1.0 Hz, 1 H), 7.01 (dd, J = 8.5, 1.0 Hz, 1 H), 6.68 (dd, J = 7.5, 1.0 Hz, 1 H), 4.01 (s, 3 H), 3.89 (s, 3 H). 4-Methoxy-2-(4-methoxyphenyl)pyrimidine (21b) 1H NMR (400 MHz, CDCl3): δ = 8.45 (d, J = 5.5 Hz, 1 H), 8.40 (d, J = 9.0 Hz, 2 H), 6.98 (d, J = 9.0 Hz, 2 H), 6.56 (d, J = 5.5 Hz, 1 H), 4.07 (s, 3 H), 3.88 (s, 3 H). 2-(Benzyloxy)-6-(thien-2-yl)pyrazine (24d) 1H NMR (400 MHz, CDCl3): δ = 8.53 (br s, 1 H), 8.13 (br s, 1 H), 7.66 (dd, J = 4.0, 1.0 Hz, 1 H), 7.53 (d, J = 7.5 Hz, 2 H), 7.46 (dd, J = 5.0, 1.0 Hz, 1 H), 7.31–7.42 (m, 3 H), 7.14 (dd, J = 5.0, 4.0 Hz, 1 H), 5.48 (s, 2 H). 6-(Thien-2-yl)pyridin-2(1H)-one (27) 1H NMR (400 MHz, CDCl3): δ = 12.82 (br s, 1 H), 7.98 (d, J = 3.5 Hz, 1 H), 7.43 (t, J = 8.5 Hz, 1 H), 7.38 (d, J = 5.0 Hz, 1 H), 7.16 (dd, J = 5.0, 3.5 Hz, 1 H), 6.52 (d, J = 8.5 Hz, 2 H). 2-Phenylpyrimidin-4(3H)-one (29) 1H NMR (400 MHz, CDCl3): δ = 8.19 (dd, J = 8.0, 1.5 Hz, 2 H), 8.15 (d, J = 6.5 Hz, 1 H), 7.52–7.61 (m, 3 H), 6.46 (d, J = 6.5 Hz, 1 H).