Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(14): 2067-2071
DOI: 10.1055/s-0034-1378333
DOI: 10.1055/s-0034-1378333
letter
Lithium(1+)-Catalyzed Nazarov-Type Cyclization of 1-Arylbuta-2,3-dien-1-ols: Synthesis of Benzofulvene Derivatives
Further Information
Publication History
Received: 02 May 2014
Accepted after revision: 25 May 2014
Publication Date:
09 July 2014 (online)
Abstract
Lithium hexafluorophosphate proved to be an effective catalyst for a Nazarov-type cyclization of 1-arylbuta-2,3-dien-1-ols to afford benzofulvenes, valuable as building blocks for functional materials and bioactive compounds.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Rogers JS, Lachicotte RJ, Bazan GC. Organometallics 1999; 18: 3976
- 1b Escarpa Gaede P. J. Organomet. Chem. 2000; 616: 29
- 1c Nakano T, Takewaki K, Yade T, Okamoto Y. J. Am. Chem. Soc. 2001; 123: 9182
- 1d Cappelli A, Mohr GP, Anzini M, Vomero S, Donati A, Casolaro M, Mendichi R, Giorgi G, Makovec F. J. Org. Chem. 2003; 68: 9473
- 1e Basurto S, García S, Neo AG, Torroba T, Marcos CF, Miguel D, Barberá J, Ros MB, de la Fuente MR. Chem. Eur. J. 2005; 11: 5362
- 1f Görl C, Alt HG. J. Organomet. Chem. 2007; 692: 5727
- 1g Kosaka Y, Kitazawa K, Inomata S, Ishizone T. ACS Macro Lett. 2013; 2: 164
- 1h Zhang Y, Ma H, Huang J. J. Mol. Catal. A: Chem. 2013; 373: 85
- 1i Cappelli A, Grisci G, Paolino M, Castriconi F, Giuliani G, Donati A, Lamponi S, Mendichi R, Boccia AC, Samperi F, Battiato S, Paccagnini E, Gentile M, Licciardi M, Giammona G, Vomero S. Chem. Eur. J. 2013; 19: 9710
- 2a Alcalde E, Mesquida N, Frigola J, López-Pérez S, Mercè R. Org. Biomol. Chem. 2008; 6: 3795
- 2b Felts AS, Siegel BS, Young SM, Moth CW, Lybrand TP, Dannenberg AJ, Marnett LJ, Subbaramaiah K. J. Med. Chem. 2008; 51: 4911
- 2c Walters MJ, Blobaum AL, Kingsley PJ, Felts AS, Sulikowski GA, Marnett LJ. Bioorg. Med. Chem. Lett. 2009; 19: 3271
- 2d Jeffrey JL, Sarpong R. Tetrahedron Lett. 2009; 50: 1969
- 3a Dyker G, Borowski S, Henkel G, Kellner A, Dix I, Jones PG. Tetrahedron Lett. 2000; 41: 8259
- 3b Rahman SM. A, Sonoda M, Itahashi K, Tobe Y. Org. Lett. 2003; 5: 3411
- 3c Furuta T, Asakawa T, Iinuma M, Fujii S, Tanaka K, Kan T. Chem. Commun. 2006; 3648
- 3d Lee C.-Y, Wu M.-J. Eur. J. Org. Chem. 2007; 3463
- 3e Ye S, Gao K, Zhou H, Yang X, Wu J. Chem. Commun. 2009; 5406
- 3f Kim KH, Kim SH, Park BR, Kim JN. Tetrahedron Lett. 2010; 51: 3368
- 3g Ye S, Yang X, Wu J. Chem. Commun. 2010; 2950
- 3h Ye S, Wu J. Org. Lett. 2011; 13: 5980
- 3i Wang W.-Y, Sun L.-L, Deng C.-L, Tang R.-Y. Zhang X.-G. 2013; 45: 118
- 3j Lim CH, Kim KH, Lim JW, Kim JN. Tetrahedron Lett. 2013; 54: 5808
- 3k Li C, Zeng Y, Wang J. Tetrahedron Lett. 2009; 50: 2956
- 3l Álvarez E, Miguel D, García-García P, Fernández-Rodríguez MA, Rodríguez F, Sanz R. Synthesis 2012; 44: 1874
- 3m Hashmi AS. K, Braun I, Nösel P, Schädlich J, Wieteck M, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2012; 51: 4456
- 3n Kovalenko SV, Peabody S, Manoharan M, Clark RJ, Alabugin IV. Org. Lett. 2004; 6: 2457
- 3o Peabody SW, Breiner B, Kovalenko SV, Patil S, Alabugin IV. Org. Biomol. Chem. 2005; 3: 218
- 3p Schmittel M, Vavilala C. J. Org. Chem. 2005; 70: 4865
- 3q Vavilala C, Byrne N, Kraml CM, Ho DM, Pascal RA. Jr. J. Am. Chem. Soc. 2008; 130: 13549
- 3r Bucher G, Mahajan AA, Schmittel M. J. Org. Chem. 2008; 73: 8815
- 3s Tsuchikama K, Kasagawa M, Endo K, Shibata T. Synlett 2010; 97
- 3t Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 17283
- 3u Chinnagolla RK, Jeganmohan M. Eur. J. Org. Chem. 2012; 417
- 3v Schreiner PR, Prall M, Lutz V. Angew. Chem. Int. Ed. 2003; 42: 5757
- 3w Watanabe M, Shiine K, Ideta K, Matsumoto T, Thiemann T. J. Chem. Res. 2008; 669
- 3x Lu J.-M, Zhu Z.-B, Shi M. Chem. Eur. J. 2009; 15: 963
- 4a Grant TN, Rieder CJ, West FG. Chem. Commun. 2009; 5676
- 4b Nakanishi W, West FG. Curr. Opin. Drug Discovery Dev. 2009; 12: 732
- 4c Shimada N, Stewart C, Tius MA. Tetrahedron 2011; 67: 5851
- 4d Vaidya T, Eisenberg R, Frontier AJ. ChemCatChem 2011; 3: 1531
- 4e Spencer WT. III, Vaidya T, Frontier AJ. Eur. J. Org. Chem. 2013; 3621
- 4f Tius MA. Chem. Soc. Rev. 2014; 43: 2979
- 4g West FG, Scadeng O, Wu Y.-K, Fradette RJ, Joy S. In Comprehensive Organic Synthesis II, Vol. 5 . Molander GA, Knochel P. Elsevier; Amsterdam: 2014. 2nd ed., Chap. 5.18, 827
- 5 Toda F, Ooi N, Akagi K. Bull. Chem. Soc. Jpn. 1971; 44: 1050
- 6a Langer P. Chem. Commun. 1999; 1217
- 6b Langer P, Döring M, Seyferth D, Görls H. Chem. Eur. J. 2001; 7: 573
- 7 Cordier P, Aubert C, Malacria M, Lacôte E, Gandon V. Angew. Chem. Int. Ed. 2009; 48: 8757
- 8 Poonoth M, Krause N. Adv. Synth. Catal. 2009; 351: 117 ; and references cited therein
- 9 Activation of the alcohol functionality by a combination of LiNTf2 and Bu4NPF6 has been reported, see: Niggemann M, Meel MJ. Angew. Chem. Int. Ed. 2010; 49: 3684
- 10 α-Allenols can be readily prepared by titanium-mediated selective allenylation of ketones and aldehydes, see: Nakagawa T, Kasatkin A, Sato F. Tetrahedron Lett. 1995; 36: 3207
- 11 Benzofulvenes 2 readily undergo polymerization even at low temperature (–20 °C) when they are stored as neat oils.
- 12 LiPF6 (H2O: 20 ppm max; 99.9+%-Li) was purchased from Strem Chemicals, Inc., Newburyport, MA, USA.
- 13 A combination of LiPF6 with hexane has been reported to be an efficient system for the tetrahydropyranylation of tertiary alcohols, see: Hamada N, Sato T. Synlett 2004; 1802
- 14 The spectroscopic data for E-3 were in full agreement with those reported in the literature.
- 15a Engel DA, Dudley GB. Org. Biomol. Chem. 2009; 7: 4149
- 15b Cadierno V, Crochet P, García-Garrido SE, Gimeno J. Dalton Trans. 2010; 39: 4015
- 16 2,3-Dimethyl-1-methylene-1H-indene (2a); Typical Procedure In a glove box, an oven-dried test tube equipped with a magnetic stirrer bar was charged with LiPF6 (3.8 mg, 0.025 mmol). The tube was removed from the glove box and a solution of α-allenol 1a (87.1 mg, 0.50 mmol) in hexane (3.0 mL) was added. The mixture was heated at 65 °C for 1 h, cooled to r.t., and passed through a short column of activated alumina, eluting with Et2O. The eluent was concentrated and the residue was purified by column chromatography (silica gel, hexane) to give a yellow oil; yield: 67.7 mg (87%). IR (neat): 3047, 2971, 1611, 1441, 1412 cm–1; 1H NMR (500 MHz, CDCl3): δ = 2.05–2.07 (m, 3 H), 2.08–2.10 (m, 3 H), 5.57 (s, 1 H), 5.89 (s, 1 H), 7.10–7.14 (m, 2 H), 7.23 (ddd, J = 7.5, 7.5, 1.0 Hz, 1 H), 7.48–7.52 (m, 1 H); 13C NMR (125 MHz, CDCl3) δ = 9.8, 10.7, 108.4, 117.7, 119.0, 124.8, 128.1, 132.0, 136.2, 137.3, 144.7, 148.7; HRMS (EI): m/z [M+] calcd for C12H12: 156.0939; found: 156.0933.
For applications of benzofulvenes in material chemistry, see:
For applications of benzofulvenes in medicinal chemistry, see:
For Pd-catalyzed Heck-type reactions, see:
For Au-catalyzed transformations, see:
For radical cyclizations, see:
For C–H bond activations, see:
For other methods, see:
For recent reviews on the Nazarov cyclization, see:
For recent reviews on the Meyer–Schuster rearrangement, see: