RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(14): 2025-2029
DOI: 10.1055/s-0034-1378380
DOI: 10.1055/s-0034-1378380
letter
A Metathesis–Acylation Approach to the Bicyclic Core of Polycyclic Polyprenylated Acylphloroglucinols
Weitere Informationen
Publikationsverlauf
Received: 21. März 2014
Accepted after revision: 03. Juni 2014
Publikationsdatum:
23. Juli 2014 (online)
Abstract
An approach to a model compound for polycyclic polyprenylated acylphloroglucinols is developed using a ring-closing metathesis approach to give a substituted cyclooctene. This undergoes cyclization via an intramolecular acylation leading to a substituted bicyclo[3.3.1]nonan-9-one related to hyperforin, nemorosone, clusianone, garsubellin A and other members of the polyprenylated acylphloroglucinol.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
-
1a For an excellent review concerning the various types of PPAPs, see: Ciochina R, Grossman R. Chem. Rev. 2006; 106: 3963
- 1b In part, PPAPs are also covered in: Singh IP, Bharate SB. Nat. Prod. Rep. 2006; 23: 558
- 2a Verotta L. Phytochem. Rev. 2002; 1: 389
- 2b Xu J, Lacoske MH, Theodorakis EA. Angew. Chem. Int. Ed. 2014; 53: 956 ; Angew. Chem. 2014, 126, 972
- 2c Beerhues L. Phytochemistry 2006; 67: 2201
- 2d Medina MA, Martinez-Poveda B, Amores-Sanchez MI, Quesada AR. Life Sci. 2006; 79: 105
- 2e Kandel BA, Ekins S, Leuner K, Thasler WE, Harteneck C, Zanger UM. J. Pharmacol. Exp. Ther. 2014; 348: 393
- 2f Russo E, Scicchitano F, Whalley BJ, Mazzitello C, Ciriaco M, Eposito S, Patane M, Upton R, Pugliese M, Serafina S. Phytother. Res. 2014; 28: 643
- 2g Naziroglu M, Cig B, Ozgul C. Neuroscience 2014; 263: 27
- 2h Brondz I, Brondz A. J. Biophys. Chem. 2012; 3: 304
- 2i Simpkins NS, Holtrup F, Rodeschini V, Taylor JD, Wolf R. Bioorg. Med. Chem. Lett. 2012; 22: 6144
- 2j Wolf RJ, Hilger RA, Hoheisel JD, Werner J, Holtrup F. PLoS One 2013; 8: e74555
- 2k Reis FH. Z, Pardo-Andreu GL, Nunez-Figueredo Y, Cuesta-Rubio O, Marin-Prida J, Uyemura SA, Curti C, Alberici LC. Chem. Biol. Interact. 2014; 212: 20
-
3a Richard J.-A, Pouwer RH, Chen DY.-K. Angew. Chem. Int. Ed. 2012; 51: 4536 ; Angew. Chem.
2012, 124, 4612
-
3b Njardarson JT. Tetrahedron 2011; 67: 7631
- 3c Singh IP, Sidana J, Bharate SB, Foley WJ. Nat. Prod. Rep. 2010; 27: 393
- 3d Simpkins NS. Chem. Commun. 2013; 49: 1042
- 3e Richard J.-A. Eur. J. Org. Chem. 2014; 273
- 4a Uwamori M, Nakada M. Nat. Prod. Commun. 2013; 8: 955
- 4b Biber N, Möws K, Plietker B. Nat. Chem. 2011; 938
- 4c Garnsey MR, Matous JA, Kwiek JJ, Coltart DM. Bioorg. Med. Chem. Lett. 2011; 21: 2406 Hyperforin, see
- 4d Bellavance G, Barriault L. Angew. Chem. Int. Ed. 2014; 53: 6701 ; Angew. Chem. 2014, 126, 6819
- 4e Uwamori M, Nakada M. Tetrahedron Lett. 2013; 54: 2022
- 4f Sparling BA, Moebius DC, Shair MD. J. Am. Chem. Soc. 2013; 135: 644
- 4g Uwamori M, Saito A, Nakada M. J. Org. Chem. 2012; 77: 5098
- 4h Zhang Q, Porco JA. Jr. Org. Lett. 2012; 14: 1796
- 4i Uwamori M, Nakada M. J. Antibiot. 2013; 66: 141
- 4j Mehta G, Bera MK. Tetrahedron 2013; 69: 1815
- 4k Horeischi F, Biber N, Plietker B. J. Am. Chem. Soc. 2014; 136: 4026
- 4l Lindermayr K, Plietker B. Angew. Chem. Int. Ed. 2013; 52: 12183 ; Angew. Chem. 2013, 125, 12405
- 6a Santelli M, Abed DE, Jellal A. J. Org. Chem. 1986; 51: 1199
- 6b Jellal A, Santelli M. Tetrahedron Lett. 1980; 21: 4487
- 6c The starting acyl cyanide was prepared according to: Jung ME, Min S.-J. J. Am. Chem. Soc. 2005; 127: 10834
- 7a Wei Y, Bakthavatchalam R. Tetrahedron 1993; 49: 2373
- 7b In aldol adducts where the chiral carbon between the carbonyl group and the hydroxy group contains a bulky substituent, the syn isomer shows a larger coupling constant than the anti isomer, e.g., see: Heng KK, Simpson J, Smith RA. J, Robinson WT. J. Org. Chem. 1981; 46: 2032
- 7c Kitamura M, Nakano K, Miki T, Okada M, Noyori R. J. Am. Chem. Soc. 2001; 123: 8939
- 7d Williamson RT, Marquez BL, Barrios Sosa AC, Koehn FE. Magn. Reson. Chem. 2003; 41: 379
- 7e Our stereochemical assignment is in full agreement with the X-ray structure depicted in ref. 15.
- 7f Indium enolates: Hirashita T, Kinoshita K, Yamamura H, Kawai M, Araki S. J. Chem. Soc., Perkin Trans. 1 2000; 825
- 7g Zinc enolates: Wei C.-Q, Zhao G, Jiang X.-R, Ding Y. J. Chem. Soc., Perkin Trans. 1 1999; 3531
- 7h Samarium enolates: Nagano T, Motoyoshiya J, Kakehi A, Nishii Y. Org. Lett. 2008; 10: 5453
- 8a Guindon Y, Rancourt J. J. Org. Chem. 1998; 63: 6554
- 8b The use of Proton-sponge® as a base in alkylation reactions of sensitive aldol adducts was reported in: Diem MJ, Burow DF, Fry JL. J. Org. Chem. 1977; 42: 1801
- 8c A Meerwein salt in combination with Proton-sponge® gave a maximum yield of 60%, e.g., see: Nakada T, Kuwabara T, Tani Y, Oishi T. Tetrahedron Lett. 1982; 23: 1015
- 8d MeI/NaH gave a complex product mixture, see: Beeson C, Pham N, Shipps GJr, Dix TA. J. Am. Chem. Soc. 1993; 115: 6803
- 9a For a general review of the synthesis of eight-membered carbocycles, see: Petasis NA, Patane MA. Tetrahedron 1992; 48: 5757
-
9b Maier ME. Angew. Chem. Int. Ed. 2000; 39: 2073 ; Angew. Chem. 2000, 112, 2153
-
9c Michaut A, Rodriguez J. Angew. Chem. Int. Ed. 2006; 45: 5740 ; Angew. Chem. 2006, 118, 5870
- 9d Tori M, Mizutani R. Molecules 2010; 15: 4242
- 9e Metathesis in Natural Product Synthesis . Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010
-
9f Nolan SP, Clavier H. Chem. Soc. Rev. 2010; 39: 3305
- 9g Prunet J. Eur. J. Org. Chem. 2011; 3634
- 9h Hillier IA, Pandian S, Percy JM, Vincent MA. Dalton Trans. 2011; 40: 1061
- 10a Burgeois D, Pancrazi A, Nolan SP, Prunet J. J. Organomet. Chem. 2002; 643-644: 247
- 10b Schiltz S, Ma C, Ricard L, Prunet J. J. Organomet. Chem. 2006; 691: 5438
- 10c Formentin P, Gimeno N, Steinke HG. J, Vilar R. J. Org. Chem. 2005; 70: 8235
- 10d Vedrenne E, Dupont H, Oualef S, Elkaim L, Grimaud L. Synlett 2005; 670
-
10e Hong SH, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
- 11a Jung ME, Piizzi G. Chem. Rev. 2005; 105: 1735
- 11b Urbina-Blanco CA, Skibinski M, O’Hagan D, Nolan SP. Chem. Commun. 2013; 49: 7201
- 11c Mitchell L, Parkinson JA, Percy JM, Singh K. J. Org. Chem. 2008; 73: 2389
- 11d Keese R, Meyer M. Tetrahedron 1993; 49: 2055
- 11e Forbes MD. E, Patton JT, Myers TL, Maynard HD, Smith DW. Jr, Schulz GR, Wagener KB. J. Am. Chem. Soc. 1992; 114: 10978
- 12a In a related RCM reaction with the Grubbs II catalyst (Scheme 6), we also observed acceleration exerted by a geminal dimethyl arrangement (Feidt, E. unpublished results).
- 12b Yang H, Ma Z, Wang Y, Wang Y, Fang L. Chem. Commun. 2010; 46: 8659
- 12c Nelson DJ, Ashworth IW, Hillier IH, Kyne SH, Pandian S, Parkinson JA, Percy JM, Rinaudo G, Vincent MA. Chem. Eur. J. 2011; 17: 13087
- 13a Gassman PG, Schenk WN. J. Org. Chem. 1977; 42: 918
- 13b Theodorou V, Skobridis K, Tzakos AG, Ragoussis V. Tetrahedron Lett. 2007; 48: 8230
-
13c Snider BB, Kwon T. J. Org. Chem. 1990; 55: 1965
- 14a Crystal structure representation of 13 (Figure 2): Crystals suitable for single crystal X-ray analysis were obtained from CHCl3. The data were collected at 133 K on a Bruker AXS X8Apex CCD diffractometer operating with graphite-monochromated MoKα radiation. Frames of 0.5° oscillation were exposed; deriving data in the θ range of 2–37° with a completeness of ~99%. Unit cell: triclinic, P-1, a = 7.1553(4) Å, b = 7.4403(4) Å, c = 11.4373(7) Å, α = 83.096(2)°, β = 77.747(2)°, γ = 74.477(3)°, V = 572.02(6) Å3. Structure solution and full least-squares refinement with anisotropic thermal parameters of all non-hydrogen atoms and free refinement of the hydrogens were performed using SHELX.14b The final refinement resulted in: R1 = 0.036. Crystallographic data for this structure have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Copies of the data can be obtained free of charge on quoting the deposition number CCDC 990861 (www.ccdc.cam.ac.uk/data_request/cif).
- 14b Sheldrick GM. Acta Crystallogr. A 2008; 64: 112
- 15 Ceccherelli P, Curini M, Marcotullio MC, Pisani E, Rosati O, Wenkert E. Tetrahedron 1997; 53: 8501
- 16a Groves JK. Chem. Soc. Rev. 1972; 1: 73
- 16b Groves JK, Jones N. J. Chem. Soc. (C) 1969; 1718
- 16c Cantrell TS, Strasser BL. J. Org. Chem. 1971; 36: 670
- 16d Matsuo J.-I, Hoshikawa T, Sasaki S, Ishibashi H. Chem. Pharm. Bull. 2010; 58: 591
- 16e Hylden AT, Uzelac EJ, Ostojic Z, Wu T.-T, Sacry KL, Sacry KL, Xi L, Jones TN. Beilstein J. Org. Chem. 2011; 7: 1323
- 17a Erman WF, Kretschmar HC. J. Org. Chem. 1968; 33: 1545
- 17b For additional details, see: Kretschmar HC. US Patent 3524884, 1970 ; Chem. Abstr. 1970, 73, 87533.
- 17c Fickers GN, Kemp KC. J. Chem. Soc., Chem. Commun. 1973; 84
- 17d Heumann A, Kraus W. Tetrahedron 1978; 34: 405
- 17e Heumann A, Kolshorn H. Tetrahedron 1975; 31: 1571
- 17f For an analogous reaction giving a bicyclo[3.2.1]octan-8-one skeleton, see: Nelsen SF, Kapp DL. J. Am. Chem. Soc. 1986; 108: 1265
- 17g Cyclooct-4-ene carboxylic acid 14 was synthesized according to: Bloodworth AJ, Melvin T, Mitchell JC. J. Org. Chem. 1988; 53: 1078 ; with a modified hydrolysis procedure (sat. KOH in MeOH–H2O, 9:1, reflux, 3 d). The acid chloride 15 was prepared according to ref. 17f.
- 18 The elimination product, bicyclo[3.3.1]non-2-en-9-one, became the main product and the total yield decreased. Since acid bromides and acid iodides are more reactive than acid chlorides, we also added tetrabutylammonium bromide or tetrabutylammonium iodide to the reaction mixture to form the acid bromides and acid iodides in situ, but this also led to decreased yields of the corresponding cyclization products and larger amounts of elimination products.
- 19 Interestingly, the 1H and 13C NMR spectra of 5a before and after chromatographic purification were identical; it seems that either 5a decomposes to some extent during chromatography, or is partially absorbed irreversibly.
- 20a Tedder JM. Chem. Rev. 1955; 55: 787
- 20b Emmons WD, McCallum KS, Ferris AF. J. Am. Chem. Soc. 1953; 75: 6047
- 20c Henne AL, Tedder JM. J. Chem. Soc. 1953; 3628
- 20d Ferrier RJ, Tedder JM. J. Chem. Soc. 1957; 1435
- 20e Royals EE, Hendry CM. J. Org. Chem. 1950; 15: 1147
- 20f Beak P, Berger KR. J. Am. Chem. Soc. 1980; 102: 3848
- 20g Moriguchi T, Endo T, Takata T. J. Org. Chem. 1995; 60: 3523
- 20h Gray AD, Smyth TP. J. Org. Chem. 2001; 66: 7113
- 20i Krasutsky PA, Kolomitsyn IV, Botov EM, Carlson RM, Semenova IG, Fokin AA. Tetrahedron Lett. 2002; 43: 8687
- 20j Montiel-Smith S, Meza-Reyes S, Vinas-Bravo O, Fernandez-Herrera MA, Martinez-Pascual R, Sandoval-Ramirez J, Fuente A, Reyes M, Ruiz JA. ARKIVOC 2005; (vi): 127
For reviews on the pharmacological activity of PPAPs, see:
For recent papers on the pharmacological activity of hyperforin, see:
For recent papers on the pharmacological activity of nemorosone, see:
For recent papers on the pharmacological activity of clusianone, see:
Total syntheses of PPAPs not included in ref. 3. Clusianone, see:
Nemorosone, see:
Garsubellin A, see:
For recent total syntheses of PPAPs not listed above, see:
See also:
For other examples of aldol reactions of sterically congested ester enolates with aldehydes, see:
See also:
For successful RCM, an additive was required to prevent isomerization of the starting material and product. Triphenylphosphine oxide worked best in our case. For studies on additives in RCM, see:
For the RCM of 1,9-decadiene into cyclooctene, see: