Synlett 2014; 25(14): 2025-2029
DOI: 10.1055/s-0034-1378380
letter
© Georg Thieme Verlag Stuttgart · New York

A Metathesis–Acylation Approach to the Bicyclic Core of Polycyclic Poly­prenylated Acylphloroglucinols

Stefanie Schmitt
a   Institut für Organische Chemie II, Universität des Saarlandes, 66123 Saarbrücken, Germany
,
Eva Feidt
a   Institut für Organische Chemie II, Universität des Saarlandes, 66123 Saarbrücken, Germany
,
David Hartmann
a   Institut für Organische Chemie II, Universität des Saarlandes, 66123 Saarbrücken, Germany
,
Volker Huch
b   Institut für Anorganische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany   Fax: +49(681)30264151   eMail: j.jauch@mx.uni-saarland.de
,
Johann Jauch*
a   Institut für Organische Chemie II, Universität des Saarlandes, 66123 Saarbrücken, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 21. März 2014

Accepted after revision: 03. Juni 2014

Publikationsdatum:
23. Juli 2014 (online)


Abstract

An approach to a model compound for polycyclic polyprenylated acylphloroglucinols is developed using a ring-closing metathesis approach to give a substituted cyclooctene. This undergoes cyclization via an intramolecular acylation leading to a substituted bicyclo[3.3.1]nonan-9-one related to hyperforin, nemorosone, clusianone, garsubellin A and other members of the polyprenylated acylphloroglucinol.

Supporting Information

 
  • References and Notes

    • 7a Wei Y, Bakthavatchalam R. Tetrahedron 1993; 49: 2373
    • 7b In aldol adducts where the chiral carbon between the carbonyl group and the hydroxy group contains a bulky substituent, the syn isomer shows a larger coupling constant than the anti isomer, e.g., see: Heng KK, Simpson J, Smith RA. J, Robinson WT. J. Org. Chem. 1981; 46: 2032

    • See also:
    • 7c Kitamura M, Nakano K, Miki T, Okada M, Noyori R. J. Am. Chem. Soc. 2001; 123: 8939
    • 7d Williamson RT, Marquez BL, Barrios Sosa AC, Koehn FE. Magn. Reson. Chem. 2003; 41: 379
    • 7e Our stereochemical assignment is in full agreement with the X-ray structure depicted in ref. 15.

    • For other examples of aldol reactions of sterically congested ester enolates with aldehydes, see:
    • 7f Indium enolates: Hirashita T, Kinoshita K, Yamamura H, Kawai M, Araki S. J. Chem. Soc., Perkin Trans. 1 2000; 825
    • 7g Zinc enolates: Wei C.-Q, Zhao G, Jiang X.-R, Ding Y. J. Chem. Soc., Perkin Trans. 1 1999; 3531
    • 7h Samarium enolates: Nagano T, Motoyoshiya J, Kakehi A, Nishii Y. Org. Lett. 2008; 10: 5453

      For successful RCM, an additive was required to prevent isomerization of the starting material and product. Triphenylphosphine oxide worked best in our case. For studies on additives in RCM, see:
    • 10a Burgeois D, Pancrazi A, Nolan SP, Prunet J. J. Organomet. Chem. 2002; 643-644: 247
    • 10b Schiltz S, Ma C, Ricard L, Prunet J. J. Organomet. Chem. 2006; 691: 5438
    • 10c Formentin P, Gimeno N, Steinke HG. J, Vilar R. J. Org. Chem. 2005; 70: 8235
    • 10d Vedrenne E, Dupont H, Oualef S, Elkaim L, Grimaud L. Synlett 2005; 670
    • 10e Hong SH, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
    • 12a In a related RCM reaction with the Grubbs II catalyst (Scheme 6), we also observed acceleration exerted by a geminal dimethyl arrangement (Feidt, E. unpublished results).

    • For the RCM of 1,9-decadiene into cyclooctene, see:
    • 12b Yang H, Ma Z, Wang Y, Wang Y, Fang L. Chem. Commun. 2010; 46: 8659
    • 12c Nelson DJ, Ashworth IW, Hillier IH, Kyne SH, Pandian S, Parkinson JA, Percy JM, Rinaudo G, Vincent MA. Chem. Eur. J. 2011; 17: 13087
    • 14a Crystal structure representation of 13 (Figure 2): Crystals suitable for single crystal X-ray analysis were obtained from CHCl3. The data were collected at 133 K on a Bruker AXS X8Apex CCD diffractometer operating with graphite-monochromated MoKα radiation. Frames of 0.5° oscillation were exposed; deriving data in the θ range of 2–37° with a completeness of ~99%. Unit cell: triclinic, P-1, a = 7.1553(4) Å, b = 7.4403(4) Å, c = 11.4373(7) Å, α = 83.096(2)°, β = 77.747(2)°, γ = 74.477(3)°, V = 572.02(6) Å3. Structure solution and full least-squares refinement with anisotropic thermal parameters of all non-hydrogen atoms and free refinement of the hydrogens were performed using SHELX.14b The final refinement resulted in: R1 = 0.036. Crystallographic data for this structure have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Copies of the data can be obtained free of charge on quoting the deposition number CCDC 990861 (www.ccdc.cam.ac.uk/data_request/cif).
    • 14b Sheldrick GM. Acta Crystallogr. A 2008; 64: 112
  • 15 Ceccherelli P, Curini M, Marcotullio MC, Pisani E, Rosati O, Wenkert E. Tetrahedron 1997; 53: 8501
    • 17a Erman WF, Kretschmar HC. J. Org. Chem. 1968; 33: 1545
    • 17b For additional details, see: Kretschmar HC. US Patent 3524884, 1970 ; Chem. Abstr. 1970, 73, 87533.
    • 17c Fickers GN, Kemp KC. J. Chem. Soc., Chem. Commun. 1973; 84
    • 17d Heumann A, Kraus W. Tetrahedron 1978; 34: 405
    • 17e Heumann A, Kolshorn H. Tetrahedron 1975; 31: 1571
    • 17f For an analogous reaction giving a bicyclo[3.2.1]octan-8-one skeleton, see: Nelsen SF, Kapp DL. J. Am. Chem. Soc. 1986; 108: 1265
    • 17g Cyclooct-4-ene carboxylic acid 14 was synthesized according to: Bloodworth AJ, Melvin T, Mitchell JC. J. Org. Chem. 1988; 53: 1078 ; with a modified hydrolysis procedure (sat. KOH in MeOH–H2O, 9:1, reflux, 3 d). The acid chloride 15 was prepared according to ref. 17f.
  • 18 The elimination product, bicyclo[3.3.1]non-2-en-9-one, became the main product and the total yield decreased. Since acid bromides and acid iodides are more reactive than acid chlorides, we also added tetrabutylammonium bromide or tetrabutylammonium iodide to the reaction mixture to form the acid bromides and acid iodides in situ, but this also led to decreased yields of the corresponding cyclization products and larger amounts of elimination products.
  • 19 Interestingly, the 1H and 13C NMR spectra of 5a before and after chromatographic purification were identical; it seems that either 5a decomposes to some extent during chromatography, or is partially absorbed irreversibly.