Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(11): 1510-1514
DOI: 10.1055/s-0034-1378709
DOI: 10.1055/s-0034-1378709
letter
Kinetic Resolution of Unsymmetrical Acyclic Allyl Carbonates Using Trimethylsilyl Cyanide via Palladium-Catalyzed Asymmetric Allylic Alkylation
Further Information
Publication History
Received: 09 March 2015
Accepted after revision: 07 May 2015
Publication Date:
01 June 2015 (online)
This paper is dedicated to Professor K. P. C. Vollhardt
Abstract
The kinetic resolution of 1,3-disubstituted unsymmetrical allylic substrates with TMSCN as the nucleophile was realized via palladium-catalyzed asymmetric allylic alkylation, providing optically active allylic substrates and β,γ-unsaturated nitriles in good yield and enantioselectivity.
Key words
kinetic resolution - palladium - asymmetric allylic alkylation - unsymmetrical acylic allyl carbonates - trimethylsilyl cyanideSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1378709.
- Supporting Information
-
References and Notes
- 1 These authors contributed equally.
- 2a Rappoport Z. The Chemistry of the Cyano Group . Interscience Publishers; London: 1970
- 2b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. VCH; New York: 1989
- 2c Najera C, Sansano JM. Chem. Rev. 2007; 107: 4584
- 2d Ordόñez M, Cativiela C. Tetrahedron: Asymmetry 2007; 18: 3
- 2e Metz AE, Kozlowski MC. J. Org. Chem. 2015; 80: 1
- 3a Huang JK, Haar CM, Nolan SP, Marcone JE, Moloy KG. Organometallics 1999; 18: 297
- 3b Zapf A, Beller M. Top. Catal. 2002; 19: 101
- 3c Fleming FF, Yao LH, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 3d Jiang W, Liu H. Chin. J. Org. Chem. 2012; 32: 1643
- 4a Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359
- 4b Gröger H. Chem. Rev. 2003; 103: 2795
- 4c Khan NH, Kureshy RI, Abdi SH. R, Agrawal S, Jasra RV. Coord. Chem. Rev. 2008; 252: 593
- 4d North M, Usanov DL, Young C. Chem. Rev. 2008; 108: 5146
- 4e Salter MM, Fossey JS, Mori Y, Kobayashi S. Chem. Rev. 2011; 111: 2626
- 4f Wang J, Liu X, Feng X. Chem. Rev. 2011; 111: 6947
- 4g Ohkuma T, Kurono N. Synlett 2012; 23: 1865
- 5a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 5b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 5c Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 5d Ding C.-H, Hou X.-L. Top. Organomet. Chem. 2011; 36: 247
- 5e You S.-L, Zhu X.-Z, Luo Y.-M, Hou X.-L, Dai L.-X. J. Am. Chem. Soc. 2001; 123: 7471
- 5f Cheng H.-B, Feng B, Chen L.-Y, Guo W, Yu X.-Y, Lu L.-Q, Chen J.-R, Xiao W.-J. Chem. Commun. 2014; 50: 2873
- 5g Feng B, Cheng H.-B, Chen J.-R, Deng Q.-H, Lu L.-Q, Xiao W.-J. Chem. Commun. 2014; 50: 9550
- 5h Yang H, Zhou H, Yin H, Xia C, Jiang G. Synlett 2014; 25: 2149
- 5i Baeza A, Nájera C. Synthesis 2014; 46: 25
- 5j Alberch E, Brook C, Asad SA, Shevyrev M, Ulicki JS, Hossain MM. Synlett 2015; 26: 388
- 5k Chen T.-G, Fang P, Hou X.-L, Dai L.-X. Synthesis 2015; 47: 134
- 6a Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
- 6b Cook GR. Curr. Org. Chem. 2000; 4: 869
- 6c Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
- 6d Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
- 6e Hayashi T, Yamamoto A, Ito Y. J. Chem. Soc., Chem. Commun. 1986; 1090
- 6f Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
- 6g Gais H.-J, Spalthoff N, Jagusch T, Frank M, Raabe G. Tetrahedron Lett. 2000; 41: 3809
- 6h Longmire JM, Wang B, Zhang X. Tetrahedron Lett. 2000; 41: 5435
- 6i Hughes DL, Palucki M, Yasuda N, Reamer RA, Reider PJ. J. Org. Chem. 2002; 67: 2762
- 6j Lussem BJ, Gais HJ. J. Am. Chem. Soc. 2003; 125: 6066
- 6k Faller JW, Wilt JC, Parr J. Org. Lett. 2004; 6: 1301
- 6l Fischer C, Defieber C, Suzuki T, Carreira EM. J. Am. Chem. Soc. 2004; 126: 1628
- 6m Onitsuka K, Matsushima Y, Takahashi S. Organometallics 2005; 24: 6472
- 6n Mao B, Ji Y.-N, Fañanás-Mastral M, Auke-Meetsma GC, Feringa BL. Angew. Chem. Int. Ed. 2012; 51: 3168
- 7a Lei B.-L, Ding C.-H, Yang X.-F, Wan X.-L, Hou X.-L. J. Am. Chem. Soc. 2009; 131: 18250
- 7b Hou X.-L, Zheng B.-H. Org. Lett. 2009; 11: 1789
- 7c Lei B.-L, Zhang Q.-S, Yu W.-H, Ding Q.-P, Ding C.-H, Hou X.-L. Org. Lett. 2014; 16: 1944
- 8a Tsuji Y, Yamada N, Tanaka S. J. Org. Chem. 1993; 58: 16
- 8b Tsuji Y, Kusui T, Kojima T, Sugiura Y, Yamada N, Tanaka S, Ebihara M, Kawamura T. Organometallics 1998; 17: 4835
- 8c Munemori M, Tsuji H, Uchida K, Suzuki Y, Isa K, Minakawa M, Kawatsura M. Synthesis 2014; 46: 2747
- 9 Tsuji reported one example in ref. 8b.
- 10 General Procedure for Kinetic Resolution [Pd(η3-C3H5)Cl]2 (2.0 mg, 0.006 mmol) and ligand (R,R)-L (8.0 mg, 0.006 mmol) and toluene (1.0 mL) were added into a dry sealed tube (10 mL) and stirred at r.t. for 30 min. Compound 1 (0.2 mmol), TMSCN (30 μL, 0.2 mmol), and toluene (1.0 mL) were added to the sealed tube, then the reaction mixture was stirred at 120 °C immediately. After the reaction time show in Table 2, the reaction mixture was quenched by sat. Na2CO3 (0.5 mL) and extracted with EtOAc (3 × 10 mL). The organic layer was combined, dried (anhydrous Na2SO4), filtered, and concentrated in vacuo to afford a crude oil. Purification by chromatography on silica gel provided the desired product (eluting with PE–EtOAc = 10:1) Compound 2c: Yield 45%; 59% ee. [α]D 20 = 8.8 (c 0.44, CHCl3).4 1H NMR (400 MHz CDCl3): δ = 7.26–7.39 (m, 5 H), 6.70–6.74 (d, J = 16.0 Hz, 1 H), 6.04–6.10 (dd, J = 16.0, 7.2 Hz, 1 H), 3.50 (m, 1 H), 1.50 (d,J = 7.2 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 135.7, 132.5, 128.7, 128.3, 126.5, 124.3, 120.9, 28.4, 19.1. MS (EI): m/z (rel. intensity) = 157 (66) [M+], 158 (7), 156 (79), 142 (38), 129 (30), 115 (100), 102 (10), 91 (11), 89 (12), 77 (20), 63 (14), 51 (22). IR (film): ν = 2985 (w), 2242 (w), 1496 (w), 1449 (m), 1399 (m), 964 (m), 745 (s), 692 (s) cm–1. HPLC (Chiralcel OD-H, hexane–2-PrOH = 95:5, 0.7 mL/min, 214 nm): t R (major) = 12.14 min; t R (minor) = 13.46 min. HRMS: m/z calcd for C11H10N [M+]: 157.0891; found: 157.0889. Compound 1c: Yield 51%; 88% ee. [α]D 20 = –75.8 (c 0.8, CHCl3). 1H NMR (400 MHz CDCl3): δ = 7.24–7.40 (m, 4 H), 6.63–6.67 (d, J = 16.0 Hz, 1 H), 6.18–6.24 (dd, J = 16.0, 7.2 Hz, 1 H), 5.36 (m, 1 H), 3.92 (d,J = 6.8 Hz, 2 H), 1.97 (m, 1 H), 1.46 (d,J = 5.6 Hz, 3 H), 0.95 (d, J = 7.2 Hz, 6 H). MS (EI): m/z (rel. intensity) = 248 (8.0) [M+], 205 (7), 192 (1), 148 (39), 131 (100), 115 (43), 105 (31), 91 (59), 77 (16), 57 (46), 51 (8). HPLC (Chiralcel OD-H, hexane–2-PrOH = 99:1, 0.7 mL/min, 214 nm): t R (major) = 7.18 min; t R (minor) = 7.80 min. Compound 2i: Yield 42%; 60% ee. [α]D 20 = 8.4 (c 0.8, CHCl3). 1HNMR (400 MHz,CDCl3): δ = 7.21–7.26 (m, 1 H), 6.97 (d, J = 7.6 Hz, 1 H), 6.90 (s, 1 H), 6.83 (dd, J = 8.4, 2.4 Hz, 1 H), 6.66–6.70 (d, J = 15.6 Hz, 1 H), 6.06 (dd, J = 16.0, 6.4 Hz, 1 H), 3.82 (m, 1 H), 3.51 (m, 1 H), 1.5 (d, J = 7.2 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 159.8, 137.1, 132.4, 129.7, 124.6, 120.9, 119.1, 113.9, 111.9, 55.3, 28.4, 19.0. MS (EI): m/z (rel. intensity): 187 (100) [M+], 186 (57), 172 (23), 156 (22), 144 (94), 128 (20), 115 (48), 102 (24), 91 (22), 77 (22), 63 (23), 51 (18). IR (film): ν = 2938 (m), 2836 (m), 2241 (m), 1599 (s), 1579 (s), 1453 (m), 1263 (m), 1041 (m), 964 (s), 775 (s), 688 (s) cm–1. HPLC (Chiralpak PA-2, hexane–2-PrOH = 99:1, 1.0 mL/min, 214 nm): t R (major) = 27.98 min; t R (minor) = 31.74 min. HRMS: m/z calcd for C12H13NO [M+]: 187.0994; found: 187.0997. Compound 1i: Yield 48%; 74% ee. [α]D 20 = –60.4 (c 1.3, CHCl3). 1H NMR (400 MHz,CDCl3): δ = 7.21–7.26 (m, 1 H), 6.97 (d, J = 7.6 Hz, 1 H), 6.90 (s, 1 H), 6.83 (dd, J = 8.0, 2.0 Hz, 1 H), 6.66–6.70 (d, J = 16.0 Hz, 1 H), 6.06 (dd, J = 16.0, 6.4 Hz, 1 H), 5.36 (m, 1 H), 3.92 (d, J = 6.8 Hz, 1 H), 3.91 (s, 3 H), 1.97 (m, 1 H), 1.46 (d,J = 6.4 Hz, 2 H), 0.92 (d, J = 6.4 Hz, 9 H). MS (EI): m/z (rel. intensity): 278 (32) [M+], 235 (2), 178 (33), 161 (75), 145 (42), 135 (100), 129 (18), 117 (26), 91 (34), 77 (14), 57 (51). HPLC (Chiralpak OJ-H, hexane–2-PrOH = 99.5:0.5, 0.7 mL/min, 214 nm): t R (major) = 23.67 min; t R (minor) = 29.92. Compound 2p: Yield 39%; 43% ee. [α]D 20 = 2.4 (c 0.85, CHCl3). 1H NMR (400 MHz,CDCl3): δ = 7.25–7.40 (m, 5 H), 6.81–6.72 (d, J = 16.0 Hz, 1 H), 6.01 (dd, J = 16.0, 6.8 Hz, 1 H), 3.36 (m, 1 H), 1.67–1.82 (m, 6 H), 1.19–1.26 (m, 5 H). 13C NMR (101 MHz, CDCl3): δ = 135.8, 133.9, 128.7, 128.1, 126.5, 122.1, 119.4, 41.1, 40.8, 31.0, 29.6, 26.0, 25.8. MS (EI): m/z (rel. intensity): 225 (8) [M+], 143 (100), 128 (2), 115 (25), 102 (2), 91 (4), 83 (13), 65 (3), 55 (46). IR (film): ν = 2922 (m), 2854 (m), 2233 (w), 1449 (m), 974 (m), 746 (s), 691 (m) cm–1. HPLC (Chiralpak AD-H, hexane–2-PrOH = 99:1, 0.7 mL/min, 214 nm): t R (minor) = 20.65 min; t R (major) = 30.04 min. HRMS: m/z calcd for C16H19N [M+]: 225.1514; found: 225.1517. Compound 1p: Yield 34%; 97% ee. [α]D 20 = –29.5 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.25–7.40 (m, 5 H), 6.65 (d, J = 16.0 Hz, 1 H), 6.15 (dd, J = 16.0, 8.0 Hz, 1 H), 5.03 (m, 1 H), 3.92 (d, J = 6.8 Hz, 1 H), 2.02 (m, 1 H), 1.88 (m, 1 H), 1.60–1.82 (m, 5 H), 1.01–1.20 (m, 5 H), 0.92 (dd, J = 6.8, 2.0 Hz, 6 H). MS (EI): m/z (rel. intensity): 316 (3) [M+], 216 (12), 199 (14), 169 (3), 156 (6), 141 (11), 133 (100), 117 (35), 91 (25), 83 (16), 57 (41), 55 (32). HPLC (Chiralpak OD-H, hexane–2-PrOH = 99.5:0.5, 0.7 mL/min, 214 nm): t R (minor) = 20.65 min; t R (major) = 30.04 min.
- 11 Saha B, RajanBabu TV. Org. Lett. 2006; 8: 4657
- 12a Li DR, He A, Falck JR. Org. Lett. 2010; 12: 1756
- 12b Akai S, Hanada R, Fujiwara N, Kita Y, Egi M. Org. Lett. 2010; 12: 4900
- 12c He P, Liu X.-H, Zheng H.-F, Li W, Lin L.-L, Feng X.-M. Org. Lett. 2012; 14: 5134
For reviews, see:
For some examples, see:
For general reviews on kinetic resolution, see:
For some selected examples, see: