Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(19): 2777-2780
DOI: 10.1055/s-0034-1379231
DOI: 10.1055/s-0034-1379231
letter
Copper(II) Acetate Catalyzed Ullmann-Type C–O Coupling Reaction of Phenols with 4-Tosylcoumarin
Further Information
Publication History
Received: 20 August 2014
Accepted after revision: 11 September 2014
Publication Date:
16 October 2014 (online)
Abstract
A copper(II) acetate mediated Ullmann-type reaction of phenols with 4-tosylcoumarin for the synthesis of 4-aryloxycoumarins is reported. The method has some attractive features such as operational simplicity, moderate to good yields, and the use of ligand-free copper(II) acetate as a green and stable catalyst.
-
References and Notes
- 1 Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
- 2 Ullmann F, Sponagel P. Ber. Dtsch. Chem. Ges. 1905; 38: 2211
- 3a Buckingham J. Dictionary of Natural Products . University Press; Cambridge: 1994
- 3b Evans DA, DeVries KM In Glycopeptides Antibiotics, Drugs and the Pharmaceutical Sciences . Decker M. Ramakris Nagarajan; New York: 1994: 63-104
- 3c Theil F. Angew. Chem. Int. Ed. 1999; 38: 2345
- 3d Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
- 3e Czarnik W. Acc. Chem. Res. 1996; 29: 112
- 3f Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
- 4a Palucki M, Wolfe JP, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 10333
- 4b Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 4369
- 4c Mann G, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 13109
- 4d Mann G, Hartwig JF. J. Org. Chem. 1997; 62: 5413
- 4e Zhao J, Zhao Y, Fu H. Angew. Chem. Int. Ed. 2011; 50: 3769
- 4f Kim HJ, Kim M, Chang S. Org. Lett. 2011; 13: 2368
- 4g Islam M, Mondal S, Mondal P, Roy AS, Hossain D, Mobarak M. Transition Met. Chem. 2011; 36: 1
- 4h Salvi L, Davis NR, Ali SZ, Buchwald SL. Org. Lett. 2012; 14: 170
- 4i Maiti D, Buchwald SL. J. Org. Chem. 2010; 75: 1791
- 5a Comprehensive Heterocyclic Chemistry II . Katritzky AR, Rees CW, Scriven EF. V. Pergamon Press; Oxford: 1996
- 5b Craig PN In Comprehensive Medicinal Chemistry . Vol. 8. Drayton CJ. Pergamon; New York, NY: 1991
- 6 Murray RD In Progress in the Chemistry of Organic Natural Products . Vol. 83. Herz W, Falk H, Kirby GW, Moore RE. Springer-Verlag; Wien: 2002: 1-529
- 7a Kirilmis C, Ahmedzade M, Servi S, Koca M, Kizirgil A, Kazaz C. Eur. J. Med. Chem. 2008; 43: 300
- 7b Flynn BL, Hamel E, Jung MK. J. Med. Chem. 2002; 45: 2670
- 7c Aslam SN, Stevenson PC, Phythian SJ, Veitch NC, Hall DR. Tetrahedron 2006; 62: 4214
- 8a Lipshutz BH. Chem. Rev. 1986; 86: 795
- 8b Williams A In Furans—Synthesis and Applications . Noyes Data Corporation; Park Ridge: 1973: 1
- 9 Kirkiacharian S, Thuy DT, Sicsic S, Bakhchinian R, Kurkjian R, Tonnaire T. Farmaco 2002; 57: 703
- 10a Sayed HH, Shamroukh AH, Rashad AE. Acta Pharm. 2006; 56: 231
- 10b Sardari S, Mori Y, Horita K, Micetich RG, Nishibe S, Daneshtalab M. Bioorg. Med. Chem. 1999; 7: 1933
- 11a Fan GJ, Mar W, Park MK, Wook ChoiE, Kim K, Kim S. Bioorg. Med. Chem. Lett. 2001; 11: 2361
- 11b Cravotto G, Nano GM, Palmisano G, Tagliapietra S. Tetrahedron: Asymmetry 2001; 12: 707
- 12 Murray RD. H, Mendez J, Brown SA. The Natural Coumarins: Occurrence, Chemistry and Biochemistry . John Wiley & Sons Ltd; New York: 1982: 21
- 13a Williams JL. R, Specht DP, Farid S. Polym. Eng. Sci. 1983; 23: 1022
- 13b Specht DP, Martic PA, Farid S. Tetrahedron 1982; 38: 1203
- 14 Zabradnik M. The Production and Application of Fluorescent Brightening Agents. John Wiley and Sons; New York: 1992
- 15 Kennedy RO, Zhorenes RD. Coumarins: Biology, Applications and Mode of Action . John Wiley and Sons; Chichester: 1997
- 16 Kim S, Kang D, Lee C.-H, Lee PH. J. Org. Chem. 2012; 77: 6530
- 17 Schmidt B, Krehl S, Kelling A, Schilde U. J. Org. Chem. 2012; 77: 2360
- 18 Tejedor D, Cotos L, García-Tellado F. J. Org. Chem. 2013; 78: 8853
- 19 Majumdar N, Korthals KA, Wulff WD. J. Am. Chem. Soc. 2012; 134: 1357
- 20a Petasis NA, Butkevich AN. J. Organomet. Chem. 2009; 694: 1747
- 20b Wang Q, Finn MG. Org. Lett. 2000; 2: 4063
- 21a So CM, Lau CP, Chan AS. C, Kwong FY. J. Org. Chem. 2008; 73: 7731
- 21b Fu X, Zhang S, Yin J, McAllister TL, Jiang SA, Tann CH, Thiruvengadam TK, Zhang F. Tetrahedron Lett. 2002; 43: 573
- 21c Nguyen HN, Huang X, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 11818
- 22 Sheng J, Fan C, Wu J. Tetrahedron 2013; 69: 10230
- 23 Khaddour Z, Akrawi OA, Suleiman AS, Patonay T, Villinger A, Langer P. Tetrahedron Lett. 2014; 55: 4421
- 24a Alizadeh A, Ghanbaripour R, Zhu LG. Synlett 2013; 24: 2124
- 24b Alizadeh A, Ghanbaripour R, Zhu LG. Tetrahedron 2014; 70: 2048
- 24c Alizadeh A, Ghanbaripour R, Zhu LG. Synlett 2014; 25: 1596
- 24d Alizadeh A, Ghanbaripour R. Helv. Chim. Acta 2014; 97: 895
- 24e Alizadeh A, Ghanbaripour R. Synth. Commun. 2014; 44: 1635
- 25 General Procedure: A solution of 4-toluenesulfonyloxycoumarin (1 mmol), phenol (1 mmol), K2CO3 (1.5 mmol), and Cu(OAc)2 (0.1 mmol) in DMF (6 mL), was stirred for 3 h at 80 °C. Upon completion, as monitored by TLC, the reaction mixture was cooled to room temperature and water (20 mL) was added. The mixture was extracted with CH2Cl2 (3 × 10 mL) and dried over anhydrous Na2SO4. The solution was filtered, concentrated, and the residue was purified by column chromatography (EtOAc–hexane, 1:10 v/v) to afford the product 2a–f. 4-Phenoxy-2H-chromene-2-one (2a): Yield: 0.154 g (65%); white powder; mp 99–101 °C. IR (KBr): 1714 (C=O), 1614, 1561 and 1483 (Ar), 1223 and 1183 (C–O) cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 5.18 (s, 1 H, CH3), 7.39 (d, 3 J H–H = 7.6 Hz, 2 H, CH ortho of Ph), 7.43–7.51 (m, 2 H, ArH), 7.58 (d, 3 J H–H = 7.6 Hz, 2 H, ArH), 7.59 (t, 3 J H–H = 8.0 Hz, 1 H, ArH), 7.77 (td, 3 J H–H = 8.0 Hz, 4 J H–H = 1.6 Hz, 1 H, ArH), 8.07 (dd, 3 J H–H = 8.0 Hz, 4 J H–H = 1.6 Hz, 1 H, ArH). 13C NMR (100 MHz, DMSO-d 6): δ = 92.83 (CH3), 115.18 (C4a), 116.59 (ArH), 121.28 (2 × CH meta of Ph), 123.01 (ArH), 124.52 (CH para of Ph), 126.90 (ArH), 130.60 (2 × CH ortho of Ph), 133.41 (ArH), 152.08 (C8a), 153.08 (C ipso -O), 161.10 (C4), 165.80 (CO2). MS: m/z = 238 [M+], 221, 210, 197, 181, 145, 118, 101, 89, 77, 63. Anal. Calcd for C15H10O3: C, 75.62; H, 4.23. Found: C, 75.69; H, 4.12. 4-(4-Ethylphenoxy)-2H-chromene-2-one (2b): Yield: 0.162 g (61%); yellow powder; mp 100–104 °C. IR (KBr): 1722 (C=O), 1619 and 1491 (Ar), 1179 (C-O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.19 (t, 3 J H–H = 7.6 Hz, 3 H, CH3), 2.62 (q, 3 J H–H = 7.6 Hz, 2 H, CH2), 5.35 (s, 1 H, CH3), 6.99 (d, 3 J H–H = 8.4 Hz, 2 H, ArH), 7.21 (d, 3 J H–H = 8.4 Hz, 2 H, ArH), 7.26 (t, 3 J H–H = 8.0 Hz, 1 H, ArH), 7.28 (d, 3 J H–H = 8.0 Hz, 1 H, ArH), 7.52 (td, 3 J H–H = 7.2 Hz, 4 J H–H = 1.2 Hz, 1 H, ArH), 7.94 (d, 3 J H–H = 7.6 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 15.59 (CH3), 28.32 (CH2), 93.46 (CH3), 115.55 (C4a), 116.82 (ArH), 121.00 (2 × ArH), 123.09 (CH of Ar), 124.03 (ArH), 129.68 (2 × ArH), 132.70 (ArH), 142.97 (C ipso -Et), 150.38 (C8a), 153.71 (C ipso -O), 162.62 (C4), 166.55 (CO2). MS: m/z = 266 [M+], 238, 181, 165, 155, 146, 131, 121, 101, 89, 77, 63. Anal. Calcd for C17H14O3: C, 76.68; H, 5.30. Found: C, 76.72; H, 5.38. 4-(3,5-Dimethylphenoxy)-2H-chromene-2-one (2c): Yield: 0.196 g (74%); yellow powder; mp 109–113 °C. IR (KBr): 1716 (C=O), 1621, 1565 and 1487 (Ar), 1273 and 1223 (C–O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.28 (s, 6 H, CH3), 5.38 (s, 1 H, CH3), 6.70 (s, 2 H, ArH), 6.88 (s, 1 H, ArH), 7.26 (t, 3 J H–H = 7.6 Hz, 1 H, ArH), 7.26 (d, 3 J H–H = 7.2 Hz, 1 H, ArH), 7.53 (td, 3 J H–H = 8.0 Hz, 4 J H–H = 1.6 Hz, 1 H, ArH), 7.93 (dd, 3 J H–H = 7.2 Hz, 4 J H–H = 1.6 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 21.21 (2 × CH3), 93.54 (CH3), 115.59 (C4a), 116.82 (ArH), 118.67 (2 × ArH), 123.05 (ArH), 124.02 (ArH), 128.33 (ArH), 132.65 (ArH), 140.43 (2 × C ipso -Me), 152.45 (C8a), 153.71 (C ipso -O), 162.73 (C4), 166.42 (CO2). MS: m/z = 266 [M+], 249, 238, 195, 155, 145, 121, 105, 91, 77. Anal. Calcd for C17H14O3: C, 76.68; H, 5.30. Found: C, 76.59; H, 5.35. 4-(3-Methylphenoxy)-2H-chromene-2-one (2d): Yield: 0.181 g (72%); beige powder; mp 118–120 °C. IR (KBr): 1715 (C=O), 1621, 1567 and 1484 (Ar), 1240 (C–O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.43 (s, 6 H, CH3), 5.46 (s, 1 H, CH3), 6.99 (d, 3 J H–H = 7.6 Hz, 1 H, ArH), 7.00 (s, 1 H, ArH), 7.17 (d, 3 J H–H = 7.6 Hz, 1 H, ArH), 7.38 (t, 3 J H–H = 7.6 Hz, 1 H, ArH), 7.39 (d, 3 J H–H = 8.0 Hz, 1 H, ArH), 7.64 (t, 3 J H–H = 8.0 Hz, 1 H, ArH), 8.05 (d, 3 J H–H = 8.0 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 21.29 (CH3), 93.58 (CH3), 115.51 (C4a), 116.85 (ArH), 118.13 (ArH), 121.76 (ArH), 123.07 (ArH), 124.05 (ArH), 127.52 (ArH), 130.09 (ArH), 124.05 (ArH), 132.71 (ArH), 140.85 (C ipso -Me), 152.45 (C8a), 153.71 (C ipso -O), 162.66 (C4), 166.37 (CO2). MS: m/z = 252 [M+], 235, 224, 211, 195, 181, 145, 132, 121, 101, 89, 77, 63. Anal. Calcd for C16H12O3: C, 76.18; H, 4.79. Found: C, 76.30; H, 4.75. 4-(4-Fluorophenoxy)-2H-chromene-2-one (2e): Yield: 0.174 g (68%); yellow powder; mp 118–121 °C. IR (KBr): 1722 (C=O), 1621 and 1495 (Ar), 1182 (C-O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.31 (s, 1 H, CH3), 7.08–7.17 (m, 2 H, ArH), 7.17–7.19 (m, 2 H, ArH), 7.22–7.31 (m, 2 H, ArH), 7.52-7.57 (m, 1 H, ArH), 7.92–7.95 (m, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 93.61 (CH3), 115.28 (C4a), 117.00 (d, 2 J C–F = 169.0 Hz, 2 × ArH), 117.31 (ArH), 122.84 (d, 3 J C–F = 85.0 Hz, 2 × ArH), 123.00 (ArH), 124.14 (ArH), 132.91 (ArH), 148.28 (C8a), 153.71 (C ipso -O), 160.75 (d, 1 J C–F = 244.0 Hz, C ipso -F), 162.33 (C4), 166.35 (CO2). MS: m/z = 256 [M+], 215, 199, 145, 136, 121, 101, 89, 75, 63. Anal. Calcd for C15H9FO3: C, 70.31; H, 3.54. Found: C, 70.26; H, 3.47. 4-(4-Methoxyphenoxy)-2H-chromene-2-one (2f): Yield: 0.209 g (78%); yellow oil. IR (KBr): 1685 (C=O), 1629, 1509 and 1455 (Ar), 1224 (C–O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.78 (s, 3 H, OMe), 5.35 (s, 1 H, CH3), 6.90 (d, 3 J H–H = 9.2 Hz, 2 H, ArH), 7.02 (d, 3 J H–H = 9.2 Hz, 2 H, ArH), 7.27 (t, 3 J H–H = 8.0 Hz, 1 H, ArH), 7.29 (d, 3 J H–H = 8.0 Hz, 1 H, ArH), 7.54 (td, 3 J H–H = 7.6 Hz, 4 J H–H = 0.9 Hz, 1 H, ArH), 7.95 (d, 3 J H–H = 7.6 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 55.73 (OMe), 93.35 (CH3), 114.49 (C4a), 115.39 (2 × ArH), 116.84 (ArH), 122.10 (2 × ArH), 123.07 (ArH), 124.04 (ArH), 132.06 (ArH), 151.86 (C8a), 152.50 (C ipso -O), 153.70 (C ipso -OMe), 162.68 (C4), 163.31 (CO2). MS: m/z = 268 [M+], 184, 145, 133, 121, 109, 101, 89, 77, 63. Anal. Calcd for C16H12O4: C, 71.64; H, 4.51. Found: C, 71.85; H, 4.37.