Synthesis, Inhaltsverzeichnis Synthesis 2015; 47(04): 575-586DOI: 10.1055/s-0034-1379457 paper © Georg Thieme Verlag Stuttgart · New York Flexible and Modular Syntheses of Enantiopure 5-cis-Substituted Prolinamines from l-Pyroglutamic Acid Felix Prause , Johannes Kaldun , Benjamin Arensmeyer , Benedikt Wennemann , Benjamin Fröhlich , Dagmar Scharnagel , Matthias Breuning* Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A wide range (25 examples) of 5-cis-substituted prolinamines is prepared in five to ten steps starting from cheap l-pyroglutamic acid. Three routes, differing mainly in the order of introduction of the substituents at the 5-cis position, the pyrrolidine nitrogen atom, and the exocyclic amino function, are successfully developed. Key words Key wordsamines - ligands - stereoselective synthesis - pyrrolidines - prolinamines Volltext Referenzen References 1 New address: Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. 2 New address: Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. 3a Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551 3b Corey EJ, Shibata S, Bakshi RK. J. Org. Chem. 1988; 53: 2861 3c Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986 4a Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296 4b Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212 4c Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248 5a Soai K, Ookawa A, Ogawa K, Kaba T. J. Chem. Soc., Chem. Commun. 1987; 467 5b Soai K, Ookawa A, Kaba T, Ogawa K. J. Am. Chem. Soc. 1987; 109: 7111 6a Zhou Y, Dong J, Zhang F, Gong Y. J. Org. Chem. 2011; 76: 588 6b Zhou Y, Gong Y. Eur. J. Org. Chem. 2011; 6092 6c Zhou Y, Zhu Y, Yan S, Gong Y. Angew. Chem. Int. Ed. 2013; 52: 10265 7a Breuning M, Steiner M. Synthesis 2008; 2841 7b Breuning M, Hein D, Steiner M, Gessner VH, Strohmann C. Chem. Eur. J. 2009; 15: 12764 7c Breuning M, Steiner M, Mehler C, Paasche A, Hein D. J. Org. Chem. 2009; 74: 1407 7d Breuning M, Steiner M, Hein D, Hörl C, Maier P. Synlett 2009; 2749 7e Breuning M, Hein D. Eur. J. Org. Chem. 2013; 7575 Reviews: 8a Boruwa J, Gogoi N, Saikia PP, Barua NC. Tetrahedron: Asymmetry 2006; 17: 3315 8b Palomo C, Oiarbide M, Laso A. Eur. J. Org. Chem. 2007; 2561 8c Blay G, Hernández-Olmos V, Pedro JR. Synlett 2011; 1195 8d Chelucci G. Coord. Chem. Rev. 2013; 257: 1887 8e Ananthi N, Velmathi S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2013; 52: 87 For selected recent examples, see: 9a Yao L, Wei Y, Wang P, He W, Zhang S. Tetrahedron 2012; 68: 9119 9b Qin D.-D, Lai W.-H, Hu D, Chen Z, Wu A.-A, Ruan Y.-P, Zhou Z.-H, Chen H.-B. Chem. Eur. J. 2012; 18: 10515 9c Xu K, Lai G, Zha Z, Pan S, Chen H, Wang Z. Chem. Eur. J. 2012; 18: 12357 9d Leighty MW, Shen B, Johnston JN. J. Am. Chem. Soc. 2012; 134: 15233 9e White JD, Shaw S. Org. Lett. 2012; 14: 6270 9f Dai Q, Rana NK, Zhao JC.-G. Org. Lett. 2013; 15: 2922 9g Qin D.-D, Yu W, Zhou J.-D, Zhang Y.-C, Ruan Y.-P, Zhou Z.-H, Chen H.-B. Chem. Eur. J. 2013; 19: 16541 9h Das A, Kureshy RI, Prathap KJ, Choudhary MK, Rao GV. S, Khan NH, Abdi SH. R, Bajaj HC. Appl. Catal. A 2013; 459: 97 9i Deng T, Cai C. J. Fluorine Chem. 2013; 156: 183 9j Ćwiek R, Niedziejko P, Kałuża Z. J. Org. Chem. 2014; 79: 1222 10 Scharnagel D, Prause F, Kaldun J, Haase RG, Breuning M. Chem. Commun. 2014; 50: 6623 Besides 5a (see ref. 10), there are only two further diamines of type 5 known, namely 5f and a 5-cis, N′-diaryl derivative, see: 11a Castro AC, Depew KM, Grogan MJ, Holson EB, Hopkins BT, Johannes CW, Keaney GF, Koney NO, Liu T, Mann DA, Nevalainen M, Peluso S, Perez LB, Snyder DA, Tibbitts TT. WO 2008024337 A2, 2008 ; Chem. Abstr. 2008, 148, 308502. 11b Hutchison A, Peterson J, Doller D, Gustavson LE, Caldwell T, Yoon T, Pringle W, Bakthavatchalam R, Shen Y, Steenstra C, Yin H, De Simone R, He X.-S. WO 2002094799 A2, 2002 ; Chem. Abstr. 2002, 138, 4617. For selected examples, see: 12a Fournie-Zaluski M.-C, Coric P, Thery V, Gonzalez W, Meudal H, Turcaud S, Michel J.-B, Roques BP. J. Med. Chem. 1996; 39: 2594 12b Xu Y, Choi J, Calaza MI, Turner S, Rapoport H. J. Org. Chem. 1999; 64: 4069 12c Baldwin JJ, McDonald E, Moriarty KJ, Sarko CR, Machinaga N, Nakayama A, Chiba J, Shin I, Yoneda Y. WO 2001000206 A1, 2001 ; Chem. Abstr. 2001, 134, 86149. 12d Pei Z, Li X, Longenecker K, von Geldern TW, Wiedeman PE, Lubben TH, Zinker BA, Stewart K, Ballaron SJ, Stashko MA, Mika AK, Beno DW. A, Long M, Wells H, Kempf-Grote AJ, Madar DJ, McDermott TS, Bhagavatula L, Fickes MG, Pireh D, Solomon LR, Lake MR, Edalji R, Fry EH, Sham HL, Trevillyan JM. J. Med. Chem. 2006; 49: 3520 12e Kimura T, Kawano K, Doi E, Kitazawa N, Takaishi M, Ito K, Kaneko T, Sasaki T, Miyagawa T, Hagiwara H, Yoshida Y. US 20070117839 A1, 2007 ; Chem. Abstr. 2007, 147, 31141. 12f Alvaro G, Bergauer M, Giovannini R, Profeta R. WO 2007042239 A1, 2007 ; Chem. Abstr. 2007, 146, 422302. 12g See also references 11b, 13b and 27. For selected examples, see: 13a Momotake A, Togo H, Yokoyama M. J. Chem. Soc., Perkin Trans. 1 1999; 1193 13b Hoveyda H, Schils D, Zoute L, Parcq J. WO 2011073376 A1, 2011 ; Chem. Abstr. 2011, 155, 123247. 14 Amide 9a and diamine 5f are known, but were not previously characterized; see ref. 11a. 15 The cis/trans ratios were determined from the 1H NMR spectra of the crude reaction mixtures after reductive cyclization. The determination of the exact values was difficult for the N-Boc-protected pyrrolidines since both diastereomers existed as mixtures of rotamers. 16 In most literature protocols, hydrogenations (see ref. 12) or modified borohydrides (see ref. 13) are used for the reduction of the intermediate Δ1-pyrrolidines. Even though the use of these reagents often results in better cis selectivities, we chose cheap NaBH4 for the reductions, because this reagent allows the N-deprotection, reductive cyclization, and N-reprotection sequence to be performed as a one-pot, three-step procedure, with comparable overall yields. To the best of our knowledge, there is just one example in which NaBH4 has been used; see ref. 12e. 17 Gribble GW, Jasinski JM, Pellicone JT, Panetta JA. Synthesis 1978; 766 18a Rudolph AC, Machauer R, Martin SF. Tetrahedron Lett. 2004; 45: 4895 18b Brenneman JB, Machauer R, Martin SF. Tetrahedron 2004; 60: 7301 Such protocols work well for the corresponding esters, see: 19a Rigo B, Lespagnol C, Pauly M. J. Heterocycl. Chem. 1988; 25: 49 19b Jain R. Org. Prep. Proced. Int. 2001; 33: 405 20 In further studies we found that Grignard reagents containing lithium salts, as formed by transmetalation of organolithiums, are not suited for addition. The reaction of compound 11 with PhMgBr–LiCl–TMEDA (1.5:1.9:1.5), for example, provided 12 in just 5% yield. 21 According to ref. 18a, the ethoxycarbonyl group can be removed with TMSI in refluxing MeCN. Pyroglutamate 14 is also commercially available. For selected procedures on the preparation of 14 from 6 or of ent-14 from ent-6, see: 22a Coudert E, Acher F, Azerad R. Synthesis 1997; 863 22b Aggarwal VK, Astle CJ, Iding H, Wirz B, Rogers-Evans M. Tetrahedron Lett. 2005; 46: 945 22c Reilly M. WO 2007110835 A2, 2007 ; Chem. Abstr. 2007, 147, 406709. 22d Vaswani RG, Chamberlin AR. J. Org. Chem. 2008; 73: 1661 22e Anelli PL, Brocchetta M, Lattuada L, Manfredi G, Morosini P, Murru M, Palano D, Sipioni M, Visigalli M. Org. Process Res. Dev. 2009; 13: 739 22f Hsu M.-C, King C.-HR, Yuan J, Chen W.-C, Chou S.-Y, Shi B. WO 2010009014 A2, 2010 ; Chem. Abstr. 2010, 152, 168816. 23 In the cases of 16b and 16c, the minor diastereomers could not be fully removed during this stage and the mixtures were carried on to the next step, where separation by column chromatography was successful. 24 McDermott TS, Bhagavatula L, Borchardt TB, Engstrom KM, Gandarilla J, Kotecki BJ, Kruger AW, Rozema MJ, Sheikh AY, Wagaw SH, Wittenberger SJ. Org. Process Res. Dev. 2009; 13: 1145 25a Lin G.-J, Huang P.-Q. Org. Biomol. Chem. 2009; 7: 4491 25b Aebi J, Binggeli A, Green L, Hartmann G, Maerki HP, Mattei P. US 20110082294 A1, 2011 ; Chem. Abstr. 2011, 154, 410031. 25c For related cyclizations of γ-amino ketones, see: Abels F, Lindemann C, Schneider C. Chem. Eur. J. 2014; 20: 1964 26 The silyl ethers 18 and 19 were isolated as single diastereomers with unknown absolute configurations. 27 Amino ketone 15c is a known compound, but was not characterized; see: Ayesa S, Belda O, Björklund C, Nilsson M, Russo F, Sahlberg C, Wiktelius D. WO 2013095275 A1, 2013 ; Chem. Abstr. 2013, 159, 166189. 28a Mohite AR, Bhat RG. J. Org. Chem. 2012; 77: 5423 28b Belema M, Hewawasam P. US 20110237636 A1, 2011 ; Chem. Abstr. 2011, 155, 484481. 29 For other approaches to 16c, see ref. 28a and: Wei L, Lubell WD. Can. J. Chem. 2001; 79: 94 The structures of the products 5, prepared by hydroxy–amine exchange, were unambiguously confirmed by 2D NMR experiments and, for 5a (see ref. 10) and 5b, by comparison with material obtained via route III. Rearrangements of 17 into β-amino piperidines via the sequence of mesylation–aziridinium formation–nucleophilic attack at C-2 with ring enlargement were not observed. It has been shown that such rearrangements do not occur under mild mesylation conditions and with amines as the nucleophiles, see: 30a Pargo DG, Cossy J. Chem. Eur. J. 2014; 20: 4516 See also: 30b Reitsema RH. J. Am. Chem. Soc. 1949; 71: 2041 30c Biel JH, Hoya WK, Leiser HA. J. Am. Chem. Soc. 1959; 81: 2527 30d Hammer CF, Heller SR, Craig JH. Tetrahedron 1972; 28: 239 31 Amide 21c is a known, but only partially characterized compound, see: Miyazaki M, Naito H, Sugimoto Y, Yoshida K, Kawato H, Okayama T, Shimizu H, Miyazaki M, Kitagawa M, Seki T, Fukutake S, Shiose Y, Aonuma M, Soga T. Bioorg. Med. Chem. 2013; 21: 4319 32 Purification of Laboratory Chemicals . Armarego WL. F, Perrin DD. Butterworth-Heinemann; Oxford: 2000. 4th ed. 33a Haddad M, Imogai H, Larchevêque M. J. Org. Chem. 1998; 63: 5680 33b Severino EA, Costenaro ER, Garcia AL. L, Correia CR. D. Org. Lett. 2003; 5: 305 33c van Esseveldt BC. J, Vervoort PW. H, van Delft FL, Rutjes FP. J. T. J. Org. Chem. 2005; 70: 1791 33d Stead D, O’Brien P, Sanderson A. Org. Lett. 2008; 10: 1409 Zusatzmaterial Zusatzmaterial Supporting Information