RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2015; 26(03): 355-358
DOI: 10.1055/s-0034-1379735
DOI: 10.1055/s-0034-1379735
letter
Proline-Catalyzed α-Aminooxylation of β-Amino Aldehydes: Access to Enantiomerically Pure syn- and anti-3-Amino-3-aryl-1,2-alkanediols
Weitere Informationen
Publikationsverlauf
Received: 13. Oktober 2014
Accepted after revision: 18. November 2014
Publikationsdatum:
09. Januar 2015 (online)
Abstract
A new synthetic method for enantioselective synthesis of syn or anti-3-amino-3-aryl-1,2-alkanediols via proline catalyzed α-aminooxylation of β-amino aldehydes are described. This methodology is successfully applied to a concise and protecting group-free asymmetric synthesis of (–)-cytoxazone, (+)-epi-cytoxazone and formal synthesis of N-thiolated 2-oxazolidinone.
Key words
amino aldehydes - asymmetric synthesis - catalysis - diastereoselectivity - enantioselectivity - natural productSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379735.
- Supporting Information
-
References and Notes
- 1a Rohokale SR, Dhavale DD. Beilstein J. Org. Chem. 2014; 10: 667
- 1b Busscher GF, Rutjes FP. J. T, van Delft FL. Chem. Rev. 2005; 105: 775
- 1c Umezawa W. Adv. Carbohydr. Chem. Biochem. 1974; 30: 111
- 1d Rinehart KL, Stroshane RM. J. Antibiot. 1976; 29: 319
- 1e Daniels PJ. K. Kirk-Othmer Encyclopedia of Chemical Technology . Vol. 2. John Wiley and Sons; Hoboken: 1978: 819
- 2a Bonini C, Chiummiento L, Bonis M, Funicello M, Lupattelli P, Suanno G, Berti G, Campaner P. Tetrahedron 2005; 61: 6580
- 2b Kempf D, Sham H. Curr. Pharm. Des. 1996; 2: 225
- 3 Peterson MA, Polt R. J. Org. Chem. 1993; 58: 4309 ; and references cited therein
- 4a Overhand M, Hecht SM. J. Org. Chem. 1994; 59: 4721
- 4b Veith U, Schwardt O, Jäger V. Synlett 1996; 1181
- 4c Zanardi F, Battistini L, Nespi M, Rassu G, Spanu P, Cornia M, Casiraghi G. Tetrahedron: Asymmetry 1996; 7: 1169
- 4d Hümmer W, Dubois E, Gracza T, Jäger V. Synthesis 1997; 634
- 4e DuBois J, Tomooka CS, Hong J, Carreira EM. J. Am. Chem. Soc. 1997; 119: 3179
- 5 Meunier N, Veith U, Jäger V. Chem. Commun. 1996; 331
- 6a Chandra Babu K, Buchi Reddy R, Mukkanti K, Madhusudhan G, Srinivasulu P. J. Chem. Pharm. Res. 2012; 4: 4988
- 6b Pedro M, Elena C, Santiago F, Francisco LM, Tomas T. Tetrahedron 1998; 54: 12301
- 6c Konradi AW, Pedersen SF. J. Org. Chem. 1990; 55: 4506
- 6d Petasis NA, Zavialov IA. J. Am. Chem. Soc. 1998; 120: 11798
- 6e Concellon JM, Suarez JR, Granda SG, Diaz MR. Org. Lett. 2005; 7: 247
- 6f Canas M, Poch M, Verdaguer X, Moyano A, Pencis MA, Riera A. Tetrahedron Lett. 1991; 32: 6931
- 6g José M, Concello N, Suárez JR, Solar V, Llavona R. J. Org. Chem. 2005; 70: 10348
- 6h Bickley JF, Roberts SM, Runhui Y, Skidmore J, Smith CB. Tetrahedron 2003; 59: 5731
- 6i Bunnage ME, Chernega AN, Davies SG, Goodwin CJ. J. Chem. Soc., Perkin Trans. 1 1994; 2373
- 6j Masanori S, Mori K. Eur. J. Org. Chem. 1999; 2965
- 6k Dziedzic P, Schyman P, Kullberg M, Córdova A. Chem. Eur. J. 2009; 15: 4044
- 7a Kumar BS, Venkataramasubramanian V, Sudalai A. Org. Lett. 2012; 14: 2468
- 7b Kotkar SP, Chavan VB, Sudalai A. Org. Lett. 2007; 9: 1001
- 7c Kotkar SP, Sudalai A. Tetrahedron Lett. 2006; 47: 6813
- 7d Rawat V, Chouthaiwale PV, Chavan VB, Suryavanshi G, Sudalai A. Tetrahedron Lett. 2010; 51: 6565
- 8 Yang JW, Chandler C, Stadler M, Kampen D, List B. Nature (London, U.K.) 2008; 452: 453
- 9a Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
- 9b Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
- 9c Hayashi Y, Yamaguchi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2003; 43: 1112
- 9d Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808
- 9e Cordova A, Sunden H, Bogevig A, Johansson M, Himo F. Chem. Eur. J. 2004; 10: 3673
- 9f Momiyama N, Yamamoto H. Chem. Commun. 2005; 3514
- 10a Kakeya H, Morishita M, Koshino H, Morita T, Kobayashi K, Osada H. J. Org. Chem. 1999; 64: 1052
- 10b Seki M, Mori K. Eur. J. Org. Chem. 1999; 2965
- 10c Carter PH, La-Porte JR, Scherle PA, Decicco CP. Bioorg. Med. Chem. Lett. 2003; 13: 1237
- 10d Milicevic S, Matovic R, Saicic RN. Tetrahedron Lett. 2004; 45: 955
- 10e Sugiyama S, Arai S, Ishii K. Tetrahedron: Asymmetry 2004; 15: 3149
- 10f Davies SG, Hughes DG, Nicholson RL, Smith AD, Wright AJ. Org. Biomol. Chem. 2004; 2: 1549
- 10g Kim IS, Kim JD, Ryu CB, Zee OP, Jung YH. Tetrahedron 2006; 62: 9349
- 10h Sohtome Y, Takemura N, Takada K, Takagi R, Iguchi T, Nagasawa K. Chem. Asian J. 2007; 2: 1150
- 11 Hamersak Z, Sepac D, Ziher D, Sunjic V. Synthesis 2003; 375
- 12a Mishra RK, Revell KD, Coates CM, Turos E, Dickeyb S, Limb DV. Bioorg. Med. Chem. 2006; 16: 2081
- 12b Steven RW, Hisao I, Marvin JM. Tetrahedron Lett. 1985; 26: 3891
- 13 Reddy RS, Chouthaiwale PV, Suryavanshi G, Chavan VB, Sudalai A. Chem. Commun. 2010; 46: 5012
- 14 Carswell EL, Snapper ML, Hoveyda AH. Angew. Chem. Int. Ed. 2006; 45: 7230
- 15 Mishra RK, Coates CM, Revell KD, Turos E. Org. Lett. 2007; 9: 575
- 16 Kim S.-G, Park T.-H. Tetrahedron: Asymmetry 2008; 19: 1626
- 17 As we have obtained the major diastereomer of >99% with enantiopurity of 93%, we believe that the stereoinduction of newly generated chiral center (C–O bond) is fully controlled by the type of proline we used, irrespective of the stereocenter in the substrate (Figure 2).
- 18 General Experimental Procedure for the Preparation of 3-Amino-1,2-alkane Diols 1a–f To a stirred precooled (–10 °C) MeCN (25 mL) solution of β-amino aldehydes 6a–f (17 mmol) and nitrosobenzene (13.6 mmol) was added l-proline (0.039 g, 20 mol%). The reaction mixture was allowed to stir at the same temperature for 20 h followed by the addition of MeOH (10 mL) and NaBH4 (25 mmol) to the reaction mixture, which was stirred for further 10 min. After addition of phosphate buffer, the resulting mixture was extracted with EtOAc (3 × 30 mL), the combined organic phases were dried over anhydrous Na2SO4 and concentrated to give the crude aminooxy alcohol, which was directly taken up for the next step without purification. To a MeOH (25 mL) solution of the above crude aminooxy alcohol was added Cu(OAc)2·H2O (2.6 mmol) at 25 °C, and the reaction mixture was allowed to stir for 10 h at that temperature. After addition of phosphate buffer, the resulting mixture was extracted with CHCl3 (3 × 30 mL), and the combined organic phases were dried over anhydrous Na2SO4 and concentrated to give the crude product, which was then purified by column chromatography over silica gel using PE–EtOAc to give 3-amino-1,2-alkane diols 1a–f.
- 19 (2R,3R)-3-(tert-Butoxycarbonylamino)-3-(p-tolyl)-1,2-propanediol (1c) Yield 63%; colorless solid recrystallized from CHCl3; mp 126–129 °C. [α]D 25 –57.87 (c 2.7, CHCl3); 95% ee from chiral HPLC analysis [Chiracel AD-H, n-hexane–i-PrOH (90:10), 0.5 mL min–1]: t R = 21.6 min (97%) and 27.1 min (2%). IR (CHCl3): νmax = 727, 780, 815, 884, 1049, 1101, 1163, 1247, 1287, 1365, 1391, 1506, 1683, 2929, 2976, 3366 cm–1. 1H NMR (200 MHz, CDCl3): δ = 1.42 (s, 9 H), 2.34 (s, 3 H), 2.82 (br s, 1 H), 3.31 (br s, 1 H), 3.51–3.62 (m, 2 H), 3.78 (br s, 1 H), 4.59–4.66 (m, 1 H), 5.25 (d, J = 6.7 Hz, 1 H), 7.09–7.22 (m, 4 H). 13C NMR (50 MHz, CDCl3 + DMSO-d 6): δ = 20.5, 27.9, 56.4, 62.8, 73.2, 78.4, 127.0, 128.3, 135.9, 136.4, 155.0. ESI-HRMS: m/z calcd for C15H23NO4 [M + Na]+: 304.1519, found: 304.1514. Anal. Calcd for C15H23NO4: C, 64.04; H, 8.24; N, 4.98. Found: C, 63.91; H, 8.12; N, 4.93.
- 20 (2R,3R)-3-(tert-Butoxycarbonylamino)-3-(o-chlorophenyl)-1,2-propanediol (1d) Yield 55%; colorless gum; [α]D 25 –7.50 (c 0.32, CHCl3); 99% ee from chiral HPLC analysis [Chiracel AS-H, n-hexane–i-PrOH (95:05), 0.5 mL min–1]: t R = 25.9 min (0.5%) and 28.8 min (99.5%). IR (CHCl3): νmax = 702, 704, 1036, 1164, 1264, 1367, 1393, 1498, 1694, 2928, 3420 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.43 (s, 9 H), 2.97 (br s, 1 H), 3.39 (br s, 1 H), 3.64–3.79 (m, 2 H), 3.98–3.99 (m, 1 H), 5.15–5.17 (m, 1 H), 5.55 (br s, 1 H), 7.19–7.25 (m, 2 H), 7.27–7.42 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 28.3, 54.1, 62.8, 72.2, 80.4, 127.1, 129.0, 130.1, 133.8, 136.6, 156.3. ESI-HRMS: m/z calcd for C14H20ClNO4 [M + Na]+: 324.0973; found: 324.0970. Anal. Calcd for C14H20ClNO4: C, 55.72; H, 6.68; N, 4.64. Found: C, 55.56; H, 6.48; N, 4.47.
- 21 (2R,3R)-3-(tert-Butoxycarbonylamino)-3-(1-naphthyl)-1,2-propanediol (1e) Yield 62%; colorless gum; [α]D 25 –13.00 (c 0.2, CHCl3); 92% ee from chiral HPLC analysis [Chiracel AD-H, n-hexane–i-PrOH (90:10), 0.5 mL min–1]: t R = 12.55 min (3.92%) and 21.64 min (96.1%). IR (CHCl3): νmax = 774, 1019, 1038, 1121, 1159, 1351, 1408, 1499, 1687, 2921, 2991, 3382 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.44 (s, 9 H), 2.66 (br s, 1 H), 3.48 (br s, 1 H), 3.76–3.86 (dd, J = 12.0, 29.3 Hz, 2 H), 4.10–4.12 (m, 1 H), 5.14 (d, J = 8.1 Hz, 1 H), 5.53–5.57 (m, 1 H), 7.48–7.57 (m, 4 H), 7.81 (d, J = 8.1 Hz, 1 H), 7.87 (d, J = 7.8 Hz, 1 H), 8.06 (d, J = 8.3 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 28.3, 51.7, 62.9, 72.9, 80.6, 122.9, 123.9, 125.3, 125.9, 126.8, 128.8, 129.1, 131.8, 134.2, 134.7, 156.8. ESI-HRMS: m/z calcd for C18H23NO4 [M + Na]+: 340.1519; found: 340.1515. Anal. Calcd for C18H23NO4: C, 68.12; H, 7.30; N, 4.41. Found: C, 67.93; H, 7.12; N, 4.31.
- 22 (2R,3S)-3-(tert-Butoxycarbonylamino)-3-(furfuryl)-1,2-propanediol (1f) Yield 58%; colorless gum; [α]D 25 –44.32 (c 0.46, CHCl3); 90% ee. IR (CHCl3): νmax = 784, 1089, 1066, 1178, 1263, 1398, 1469, 1508, 1699, 2824, 2841, 3384, 3421 cm–1. 1H NMR (500 MHz, CDCl3): δ = 1.44 (s, 9 H), 2.95 (br s, 2 H), 3.67 (s, 2 H), 3.81 (br s, 1 H), 4.76–4.79 (m, 1 H), 5.29 (br s, 1 H), 6.32–6.34 (m, 2 H), 7.37 (br s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 28.3, 50.7, 62.8, 73.1, 80.6, 108.1, 110.5, 142.2, 151.7, 156.2. ESI-HRMS: m/z calcd for C12H19NO5 [M + Na]+: 280.1169; found: 280.1177. Anal. Calcd for C12H19NO5: C, 56.02; H, 7.44; N, 5.44. Found: C, 56.07; H, 7.36; N, 5.32.