Synlett 2015; 26(05): 609-612
DOI: 10.1055/s-0034-1379936
letter
© Georg Thieme Verlag Stuttgart · New York

Derivatives of α,α-Aryl Naphthalimide Nitriles as Fluoride Ion Sensors: Convenient Precursors for the Synthesis of Aryl Naphthalimide Ketones

Jinju Chen
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
,
Chuanxiang Liu*
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
,
Fengjie Guan
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
,
Chuanxiu Zhang
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
,
Kai Ji
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
,
Xinyu Wang
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
,
Min Xu
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
,
Fanhong Wu*
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. of China   Email: cxliu@sit.edu.cn   Email: wfh@sit.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 27 September 2014

Accepted after revision: 24 November 2014

Publication Date:
12 January 2015 (online)


Abstract

A facile and efficient SNAr procedure involving the displacement of activated naphthalimide bromides with the anions of substituted aryl acetonitriles was developed for the preparation of α,α-aryl naphthalimide nitrile derivatives, which can be used as fluoride ion sensors and convenient precursors for the synthesis of aryl naphthalimide ketones based on fluoride-induced deprotonation followed by autoxidative decyanation.

Supporting Information

 
  • References and Notes

    • 1a For leading references, see: Science of Synthesis . Murahashi S.-I. Thieme; Stuttgart: 2004
    • 1b Patai S, Friedrich K, Wallenfels K. The Chemistry of the Cyano Group . Wiley-Interscience; New York: 1970
    • 1c Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 4442
  • 2 Kurz ME, Lapin SC, Mariam KT, Hagen J, Qian XQ. J. Org. Chem. 1984; 2728
  • 3 Narsaiah AV, Nagaiah K. Adv. Synth. Catal. 2004; 1271
  • 4 Wang GZ, Wu J, Ding K. Org. Lett. 2008; 4573
    • 5a Yeung PY, Chung KH, Kwong FY. Org. Lett. 2011; 2912
    • 5b Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 234
    • 5c You J, Verkade JG. J. Org. Chem. 2003; 8003
    • 5d You J, Verkade JG. Angew. Chem. Int. Ed. 2003; 5051
    • 6a Tempesti TC, Pierini AB, Baumgartner MT. New J. Chem. 2012; 597
    • 6b Rossi RA, Pierini AB, Peñéñory AB. Chem. Rev. 2003; 71
    • 7a Klapars A, Waldman JH, Campos KR, Jensen MS, McLaughlin M, Chung JY, Cvetovich LR. J, Chen C. J. Org. Chem. 2005; 10186
    • 7b Sommer MB, Begtrup M, Boegesoe KP. J. Org. Chem. 1990; 4817
    • 7c Makosza M, Podraza R, Kwast A. J. Org. Chem. 1994; 6796
    • 7d Caron S, Vazquez E, Wojcik JM. J. Am. Chem. Soc. 2000; 712
    • 7e Kubota Y, Tsuzuki T, Funabiki K, Ebihara M, Matsui M. Org. Lett. 2010; 4010
    • 8a Choi J, Fu GC. J. Am. Chem. Soc. 2012; 9102
    • 8b Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2002; 9330
    • 9a Qian X, Xiao Y, Xu Y, Guo X, Qian J, Zhu W. Chem. Commun. 2010; 6418
    • 9b Liu T, Xu Z, Spring DR, Cui J. Org. Lett. 2013; 2310
    • 9c Xu Z, Qian X, Cui J. Org. Lett. 2005; 3029
    • 9d Zhang JF, Lim CS, Bhuniya S, Cho BR, Kim JS. Org. Lett. 2011; 1190
    • 9e Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T. Chem. Soc. Rev. 2010; 3936
    • 9f Banerjee S, Veale EB, Phelan CM, Murphy SA, Tocci GM, Gillespie LJ, Frimannsson DO, Kelly JM, Gunnlaugsson T. Chem. Soc. Rev. 2013; 1601
    • 9g Lee MH, Kim JY, Han JH, Bhuniya S, Sessler JL, Kang C, Kim JS. J. Am. Chem. Soc. 2012; 12668
    • 9h De Los Cobos O, Fousseret B, Lejeune M, Rossignol F, Dutreilh-Colas M, Carrion C, Boissière C, Ribot F, Sanchez C, Cattoën X, Man MW. C, Durand J.-O. Chem. Mater. 2012; 4337
    • 9i Yu H, Xiao Y, Jin L. J. Am. Chem. Soc. 2012; 17486
    • 9j de Silva AP, Gunaratne HQ. N, Gunnlaugsson T, Huxley AJ. M, McCoy CP, Rademacher JT, Rice TE. Chem. Rev. 1997; 1515
    • 10a Deutsch HM, Shi Q, Gruszecka-Kowalik E, Schweri MM. J. Med. Chem. 1996; 1201
    • 10b Mandal SK, Sarkar A. J. Org. Chem. 1998; 5672
    • 10c Taber DF. J. Org. Chem. 2000; 254
    • 10d Kobayashi K, Nishimura Y, Gao F, Gotoh K, Nishihara Y, Takagi K. J. Org. Chem. 2011; 1949
  • 11 Zhu W, Yao R, Tian H. Dyes Pigm. 2002; 147
  • 12 Chen J, Liu C, Zhang J, Ding W, Zhou M, Wu F. Chem. Commun. 2013; 10814
    • 13a Yin Z, Zhang Z, Kadow JF, Meanwell NA, Wang T. J. Org. Chem. 2004; 1364
    • 13b Ouchi A, Hyugano T, Liu C. Org. Lett. 2009; 4870
    • 14a Moragues ME, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev. 2011; 2593
    • 14b Wade CR, Broomsgrove AE. J, Aldridge S, Gabbaï FP. Chem. Rev. 2010; 3958
    • 14c Zhou Y, Zhang JF, Yoon J. Chem. Rev. 2014; 5511
    • 14d Amendola V, Esteban-Gómez D, Fabbrizzi L, Licchelli M. Acc. Chem. Res. 2006; 343
    • 14e Gale PA, Busschaert N, Haynes CJ. E, Karagiannidis LE, Kirby IL. Chem. Soc. Rev. 2014; 205
    • 14f Lee JY, Cho EJ, Mukamel S, Nam KC. J. Org. Chem. 2004; 943
    • 14g Kim T.-H, Swager TM. Angew. Chem. Int. Ed. 2003; 4803
    • 14h Du J, Hu M, Fan J, Peng X. Chem. Soc. Rev. 2012; 4511
    • 14i Martínez-Máñez R, Sancenón F. Chem. Rev. 2003; 4419
    • 14j McDonald KP, Ramabhadran RO, Lee S, Raghavachari K, Flood AH. Org. Lett. 2011; 6260
    • 14k Hua Y, Flood AH. Chem. Soc. Rev. 2010; 1262
    • 15a Yang Z, Zhang Z, Meanwell NA, Kadow JF, Wang T. Org. Lett. 2002; 1103
    • 15b Liu Y, Yun X, Zhang-Negrerie D, Huang J, Du Y, Zhao K. Synthesis 2011; 2984
    • 15c Kulp SS, McGee MJ. J. Org. Chem. 1983; 4097
  • 16 Typical Procedures Anhydrous THF (25 mL) solution of 2a (0.40 g, 3.42 mmol) was stirred for 1 h at r.t., then N-butyl-4-bromo-1,8-naphthalimide (1, 1.00 g, 3.02 mmol) was added. After completion, the reaction mixture was quenched with HCl (15%) until pH 2–3. The organic fraction was extracted with EtOAc (3 × 20 mL), dried over anhydrous Na2SO4, and filtered. Volatile fractions were removed under reduced pressure, and the residual material was purified by flash column chromatography on silica gel (PE–EtOAc, 25:1) to provide 3a as a pink solid 0.80 g (72% yield). 2-{2-Butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl}-2-phenylacetonitrile (3a) Yield 0.80 g (72%); mp 140.0–140.1 °C. 1H NMR (500 MHz, CDCl3): δ = 8.56 (d, J = 7.5 Hz, 1 H), 8.55 (d, J = 6.7 Hz, 1 H), 8.19 (d, J = 8.5 Hz, 1 H), 7.84 (d, J = 7.6 Hz, 1 H), 7.69 (dd, J = 8.3, 7.5 Hz, 1 H), 7.33–7.27 (m, 5 H), 5.83 (s, 1 H), 4.11 (t, J = 7.5 Hz, 2 H), 1.67–1.61 (m, 2 H), 1.41–1.34 (m, 2 H), 0.91 (t, J = 7.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 163.8, 163.5, 137.5, 134.2, 131.3, 130.8, 129.6, 129.1, 128.9, 127.9, 127.8, 127.7, 123.7, 118.6, 40.4, 40.3, 30.2, 20.3, 13.8. ESI-HRMS: m/z calcd for C24H21N2O2 [M + H]+: 369.16030; found: 369.16122. A mixture of compound 3a (0.10 g, 0.27 mmol) and TBAF (0.21g, 0.81 mmol) in CH2Cl2 (25 mL) was stirred at r.t. for 6 h. After completion, the solvent was removed under reduced pressure. The residue was subjected to a column chromatography on silica gel (PE–EtOAc, 20:1) to give product 4a as a white solid 92 mg (95% yield). 6-Benzoyl-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (4a) Yield 92 mg (95%); white solid; mp 134.8–135.1 °C. 1H NMR (500 MHz, CDCl3): δ = 8.58 (d, J = 7.4 Hz, 2 H), 8.27 (d, J = 8.5 Hz, 1 H), 7.78 (d, J = 7.5 Hz, 2 H), 7.74 (d, J = 7.5 Hz, 1 H), 7.69 (dd, J = 8.1, 7.7 Hz, 1 H), 7.59 (dd, J = 7.5, 7.4 Hz, 1 H), 7.43 (dd, J = 7.8, 7.8 Hz, 2 H), 4.14 (t, J = 7.6 Hz, 2 H), 1.70–1.64 (m, 2 H), 1.43–1.36 (m, 2 H), 0.92 (t, J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 196.3, 163.9, 163.6, 141.9, 137.1, 134.1, 131.8, 131.6, 130.4, 129.7, 129.4, 128.8, 128.5, 127.9, 127.3, 124.5, 123.0, 40.4, 30.2, 20.4, 13.8. ESI-HRMS: m/z calcd for C23H20NO3 [M + H]+: 358.14432; found: 358.14605.
  • 17 Connors AK. Binding Constants: The Measurement of Molecular Complex Stability. Wiley; New York: 1987