Subscribe to RSS
DOI: 10.1055/s-0034-1380113
Sequence-Defined Oligothioetheramides
Publication History
Received: 11 December 2014
Accepted after revision: 23 December 2014
Publication Date:
10 February 2015 (online)
Abstract
The importance of sequence-defined polymers is evident in highly developed biological systems. As such, their synthetic de novo production with similar macromolecular diversity, efficiency, and speed has been the focus of considerable research. In this brief review, the rationale behind the new synthesis of sequence-defined oligothioetheramides (oligoTEAs) will be placed in context with the accepted methods of peptide and peptoid synthesis, where all methods notably utilize chemical orthogonality in their design. Along with the conceptual design, we will discuss the assembly of oligoTEAs by highlighting the solution-phase kinetics of each orthogonal reaction, the liquid-phase fluorous purification methodology, a proof-of-principle synthesis, and the assembly of a full-length oligomer. Overall, the success of oligoTEAs stems from the rapid orthogonal chemical reactions at each end of the unique N-allyl-N-acrylamide monomer. OligoTEAs seek to contribute and advance the field of sequence-defined polymers by providing additional structural diversity to fundamentally study sequence-structure-function relationships for both material science and biological applications.
1 Introduction
2 Supported Synthesis via Orthogonal Chemistries
3 Conceptual Design of OligoTEA Assembly
4 Proof-of-Principle
5 Synthesis and Characterization of OligoTEAs
6 Conclusion
-
References
-
1 Lutz J, Ouchi M, Liu DR, Sawamoto M. Science 2013; 341: 1238149
- 2 Lee D, Redfern O, Orengo C. Nat. Rev. Mol. Cell Biol. 2007; 8: 995
- 3 Hudson WH, Ortlund EA. Nat. Rev. Mol. Cell Biol. 2014; 15: 749
- 4 Simon RJ, Kania RS, Zuckermann RN, Huebner DV, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 9367
- 5 Soth MJ, Nowick JS. Curr. Opin. Chem. Biol. 1997; 1: 120
- 6 Burkoth TS, Fafarman AT, Charych DH, Connolly MD, Zuckermann RN. J. Am. Chem. Soc. 2003; 125: 8841
- 7 Porel M, Alabi CA. J. Am. Chem. Soc. 2014; 136: 13162
- 8 Niu J, Hili R, Liu DR. Nat. Chem. 2013; 5: 282
- 9 Lewandowski B, De Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PM. E, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA. Science 2013; 339: 189
- 10 Brudno Y, Liu DR. Chem. Biol. 2009; 16: 265
- 11 Minoda M, Sawamoto M, Higashimura T. Macromolecules 1990; 23: 4889
- 12 Nakatani K, Ogura Y, Koda Y, Terashima T, Sawamoto M. J. Am. Chem. Soc. 2012; 134: 4373
- 13 Satoh K, Ozawa S, Mizutani M, Nagai K, Kamigaito M. Nat. Commun. 2010; 1: 6
- 14 Zhang J, Matta ME, Hillmyer MA. ACS Macro Lett. 2012; 1: 1383
- 15 Ida S, Ouchi M, Sawamoto M. J. Am. Chem. Soc. 2010; 132: 14748
- 16 Zamfir M, Lutz J. Nat. Commun. 2012; 3: 1138
- 17 Pfeifer S, Lutz J. J. Am. Chem. Soc. 2007; 129: 9542
- 18 Gody G, Maschmeyer T, Zetterlund PB, Perrier S. Nat. Commun. 2013; 4: 2505
- 19 Merrifield RB. J. Am. Chem. Soc. 1963; 85: 2149
- 20 Beaucage SL, Caruthers MH. Tetrahedron Lett. 1981; 22: 1859
- 21 Beaucage SL, Iyer RP. Tetrahedron 1992; 48: 2223
- 22 Coin I, Beyermann M, Bienert M. Nat. Protoc. 2007; 2: 3247
- 23 Hartmann L, Krause E, Antonietti M, Börner HG. Biomacromolecules 2006; 7: 1239
- 24 Ponader D, Wojcik F, Beceren-Braun F, Dernedde J, Hartmann L. Biomacromolecules 2012; 13: 1845
- 25 Schaffert D, Badgujar N, Wagner E. Org. Lett. 2011; 13: 1586
- 26 Hahn F, Schepers U. J. Comb. Chem. 2008; 10: 267
- 27 Zuckermann RN. Biopolymers 2011; 96: 545
- 28 Bayer E, Mutter M. Nature (London) 1972; 237: 512
- 29 Han H, Wolfe MM, Brenner S, Janda KD. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 6419
- 30 Bonora GM, Scremin CL, Colonna FP, Garbesi A. Nucleic Acids Res. 1990; 18: 3155
- 31 Douglas SP, Whitfield DM, Krepinsky JJ. J. Am. Chem. Soc. 1991; 113: 5095
- 32 Solleder SC, Meier MA. R. Angew. Chem. Int. Ed. 2014; 53: 711
- 33 Atherton E, Clive DL. J, Sheppard RC. J. Am. Chem. Soc. 1975; 97: 6584
- 34 Atherton E, Logan CJ, Sheppard RC. J. Chem. Soc., Perkin Trans. 1 1981; 538
- 35 Wang S, Merrifield RB. J. Am. Chem. Soc. 1969; 91: 6488
- 36 Wang S. J. Am. Chem. Soc. 1973; 95: 1328
- 37 Matsueda GR, Stewart JM. Peptides 1981; 2: 45
- 38 Houghten RA, Ostresh JM, Klipstein FA. Eur. J. Biochem. 1984; 145: 157
- 39 Houghten RA. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 5131
- 40 Sarin VK, Kent SB. H, Merrifield RB. J. Am. Chem. Soc. 1980; 102: 5463
- 41 Mitchell AR, Mitchell ER, Kent SB. H, Engelhard M, Merrifield RB. J. Org. Chem. 1978; 43: 2845
- 42 Hood CA, Fuentes G, Patel H, Page K, Menakuru M, Park JH. J. Pept. Sci. 2008; 14: 97
- 43 Berndt P, Fields GB, Tirrell M. J. Am. Chem. Soc. 1995; 117: 9515
- 44 Wellings DA, Atherton E. Methods Enzymol. 1997; 289: 44
- 45 Atherton E, Fox H, Harkiss D, Logan CJ, Sheppard RC, Williams BJ. J. Chem. Soc., Chem. Commun. 1978; 537
- 46 Bacsa B, Desai B, Dibó G, Kappe CO. J. Pept. Sci. 2006; 12: 633
- 47 Hussein WM, Liu T, Toth I, Skwarczynski M. Org. Biomol. Chem. 2013; 11: 2370
- 48 Murray JK, Gellman SH. Nat. Protoc. 2007; 2: 624
- 49 Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S. Org. Lett. 2005; 7: 877
- 50 Banerjee J, Hanson AJ, Muhonen WW, Shabb JB, Mallik S. Nat. Protoc. 2009; 5: 39
- 51 Figliozzi G, Goldsmith R, Ng S, Banville S. Methods Enzymol. 1996; 267: 437
- 52 Kirshenbaum K, Barron AE, Goldsmith RA, Arm P, Armand P, Bradley EK, Truong KT. V, Dill KA, Cohen FE, Zuckermann RN. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 4303
- 53 Holub JM, Jang H, Kirshenbaum K. Org. Biomol. Chem. 2006; 4: 1497
- 54 Murphy JE, Uno T, Hamer JD, Cohen FE, Dwarki V, Zuckermann RN. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 1517
- 55 Rosales AM, Murnen HK, Zuckermann RN, Segalman R. Macromolecules 2010; 43: 5627
- 56 Seo J, Michaelian N, Owens SC, Dashner ST, Wong AJ, Barron AE, Carrasco MR. Org. Lett. 2009; 11: 5210
- 57 Olivos HJ, Olivos OJ, Alluri PG, Reddy MM, Salony D, Kodadek T. Org. Lett. 2002; 4: 4057
- 58 Gorske BC, Jewell SA, Guerard EJ, Blackwell HE. Org. Lett. 2005; 7: 1521
- 59 Nnanabu E, Burgess K. Org. Lett. 2006; 8: 1259
- 60 Messeguer J, Cortés N, García-Sanz N, Navarro-Vendrell G, Ferrer-Montiel A, Messeguer A. J. Comb. Chem. 2008; 10: 974
- 61 Cho S, Choi J, Kim A, Lee Y, Kwon Y. J. Comb. Chem. 2010; 12: 321
- 62 Merrifield RB. Biochemistry 1964; 3: 1385
- 63 Kosuri S, Church GM. Nat. Methods 2014; 11: 499
- 64 Nucleic Acids Book: Solid-Phase Oligonucleotide Synthesis . Brown T, Brown TJr. ATDBio Ltd; Southampton: 2014
- 65 Peptide Antigens: A Practical Approach . Wisdom GB. Oxford University Press; Cary (NC, USA): 1994
- 66 Fillon Y. Dissertation. Purdue University; USA: 2007: 129
- 67 Bray BL. Nat. Rev. Drug Discovery 2003; 2: 587
- 68 Anderson GW, McGregor AC. J. Am. Chem. Soc. 1957; 79: 6180
- 69 Fields GB, Noble RL. Int. J. Pept. Protein Res. 1990; 35: 161
- 70 Carpino LA, Han GY. J. Am. Chem. Soc. 1970; 92: 5748
- 71 Zuckermann RN, Kerr JM, Kent SB. H, Moos WH. J. Am. Chem. Soc. 1992; 114: 10646
- 72 Sun J, Zuckermann RN. ACS Nano 2013; 7: 4715
- 73 Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee B.-C, Connolly MD, Kisielowski C, Zuckermann RN. Nat. Mater. 2010; 9: 454
- 74 Chan JW, Hoyle CE, Lowe AB, Bowman M. Macromolecules 2010; 43: 6381
- 75 Chan JW, Hoyle CE, Lowe AB. J. Am. Chem. Soc. 2009; 131: 5751
- 76 Suga S, Kageyama Y, Babu G, Itami K, Yoshida J. Org. Lett. 2004; 6: 2709
- 77 Curran DP. Synlett 2001; 1488
- 78 Curran DP, Hadida S, He M. J. Org. Chem. 1997; 62: 6714