Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(10): 1379-1384
DOI: 10.1055/s-0034-1380208
DOI: 10.1055/s-0034-1380208
letter
New Developments in the Synthesis of (E)-8-Styrylflavones
Further Information
Publication History
Received: 14 March 2015
Accepted: 03 April 2015
Publication Date:
04 May 2015 (online)
Abstract
A novel route for the synthesis of new (E)-8-styrylflavones is reported. This methodology involves the regio- and stereoselective Heck cross-coupling reaction of 8-iodoflavones and styrene derivatives. The Heck precursors, 8-iodoflavones, were obtained through an efficient regioselective one-pot oxidative cyclization–iodination reaction of (E)-2′-hydroxychalcones by applying the iodine/dimethyl sulfoxide system.
-
References and Notes
- 1 Singh M, Kaur M, Silakari O. Eur. J. Med. Chem. 2014; 84: 206
- 2 lwashina T. J. Plant Res. 2000; 113: 287
- 3 Martens S, Mitho A. Phytochemistry 2005; 66: 2399
- 4 Kyle JA. M, Duthie GG In Flavonoids: Chemistry, Biochemistry and Applications . Andersen ØM, Markham KR. CRC Press; Boca Raton: 2006: 228
- 5a Ribeiro D, Freitas M, Tomé SM, Silva AM. S, Porto G, Fernandes E. Eur. J. Med. Chem. 2013; 67: 280
- 5b Shi Y, Wu D, Sun Z, Yang J, Chai H, Tang L, Guo Y. Phytother. Res. 2012; 26: 1410
- 5c Kilani-Jaziri S, Frachet V, Bhouri W, Ghedira K, Chekir-Ghedira L, Ronot X. Drug Chem. Toxicol. 2012; 35: 1
- 5d Lim H, Jin JH, Park H, Kim HP. Eur. J. Pharmacol. 2011; 670: 617
- 5e Casano G, Dumètre A, Pannecouque C, Hutter S, Azas N, Robin M. Bioorg. Med. Chem. 2010; 18: 6012
- 5f Roy S, Chatterjee P. Ind. Crops Prod. 2010; 32: 375
- 5g Mughal EU, Ayaz M, Hussain Z, Hasan A, Sadiq A, Riaz M, Malik A, Hussain S, Choudharyb MI. Bioorg. Med. Chem. 2006; 14: 4704
- 5h Wang C, Li H, Menga W, Qing F. Bioorg. Med. Chem. Lett. 2005; 15: 4456
- 6 Hyun J, Woo Y, Hwang D, Jo G, Eom S, Lee Y, Park JC, Lim Y. Bioorg. Med. Chem. Lett. 2010; 20: 5510
- 7a Cotelle N, Bernier J.-L, Catteau J.-P, Pommery J, Wallet J.-C, Gaydou EM. Free Radical Biol. Med. 1996; 20: 35
- 7b Kandaswami G, Perkins E, Soloniuk DS, Drzewiecki G, Middleton E. Anti-Cancer Drugs 1993; 4: 91
- 8a Todorova TZ, Traykov MG, Tadjer AV, Velkov ZhA. Comp. Theor. Chem. 2013; 1017: 85
- 8b Velkov ZhA, Kolev MK, Tadjer AV. Collect. Czech Chem. Commun. 2007; 72: 1461
- 9a Rasulev BF, Abdullaev ND, Syrov VN, Leszczynski J. QSAR Comb. Sci. 2005; 24: 1056
- 9b Hyun J, Woo Y, Hwang D, Jo G, Eom S, Lee Y, Park JC, Lim Y. Bioorg. Med. Chem. Lett. 2010; 20: 5510
- 10a Shaw AY, Chang CY, Liau HH, Lu PJ, Chen HL, Yang CN, Li HY. Eur. J. Med. Chem. 2009; 44: 2552
- 10b Gomes A, Fernandes E, Silva AM. S, Pinto DC. G. A, Santos CM. M, Cavaleiro JA. S, Lima JL. F. C. Biochem. Pharmacol. 2009; 78: 171
- 10c Marinho J, Pedro M, Pinto DC. G. A, Silva AM. S, Cavaleiro JA. S, Sunkel CE, Nascimento MS. J. Biochem. Pharmacol. 2008; 75: 826
- 10d Gomes A, Fernandes E, Silva AM. S, Santos CM. M, Pinto DC. G. A, Cavaleiro JA. S, Lima JL. F. C. Bioorg. Med. Chem. 2007; 15: 6027
- 10e Conti C, Mastromarino P, Goldoni P, Portalone G, Desideri N. Antivir. Chem. Chemother. 2005; 16: 267
- 10f Momoi K, Sugita Y, Ishihara M, Satoh K, Kikuchi H, Hashimoto K, Yokoe I, Nishikawa H, Fujisawa S, Sakagami H. In Vivo 2005; 19: 157
- 10g Filipe P, Silva AM. S, Morliere P, Brito CM, Patterson LK, Hug GL, Silva JN, Cavaleiro JA. S, Maziere JC, Freitas JP, Santus R. Biochem. Pharmacol. 2004; 67: 2207
- 10h Desideri N, Mastromarino P, Conti C. Antivir. Chem. Chemother. 2003; 14: 195
- 11a Shimada C, Uesawa Y, Ishii-Nozawa R, Ishihara M, Kagaya H, Kanamoto T, Terakubo S, Nakashima H, Takao K, Sugita Y, Sakagami H. Anticancer Res. 2014; 34: 5405
- 11b Takao K, Ishikawa R, Sugita Y. Chem. Pharm. Bull. 2014; 62: 810
- 11c Conti C, Desideri N. Bioorg. Med. Chem. 2010; 18: 6480
- 11d Sonawane SA, Chavan VP, Shingare MS, Karale BK. Indian J. Heterocycl. Chem. 2002; 12: 65
- 12 Dawood KM. Tetrahedron 2007; 63: 9642
- 13 Patonay T, Vasas A, Kiss-Szikszai A, Silva AM. S, Cavaleiro JA. S. Aust. J. Chem. 2010; 63: 1582
- 14 Vasas A, Patonay T, Kónya K, Silva AM. S, Cavaleiro JA. S. Aust. J. Chem. 2011; 64: 647
- 15 Fekete S, Patonay T, Silva AM. S, Cavaleiro JA. S. ARKIVOC 2012; (v): 210
- 16 Dahlén K, Grøtli M, Luthman K. Synlett 2006; 897
- 17 Rocha DH. A, Pinto DC. G. A, Silva AM. S, Patonay T, Cavaleiro JA. S. Synlett 2012; 23: 559
- 18 Rocha DH. A, Pinto DC. G. A, Silva AM. S. Synlett 2013; 24: 2683
- 19 Lokshin V, Heynderickx A, Samat A, Pèpe G, Guglielmetti R. Tetrahedron Lett. 1999; 40: 6761
- 20a Pinto DC. G. A, Silva AM. S, Cavaleiro JA. S. J. Heterocycl. Chem. 1996; 33: 1887
- 20b Pinto DC. G. A, Silva AM. S, Cavaleiro JA. S. Tetrahedron Lett. 1994; 35: 9459
- 21 Park H, Dao TT, Kim HP. Eur. J. Med. Chem. 2005; 40: 943
- 22 Ganguly NC, Chandra S, Barik SK. Synth. Commun. 2013; 43: 1351
- 23 Larsen L, Yoon DH, Weavers RT. Synth. Commun. 2009; 39: 2935
- 24 Dao TT, Kim SB, Sin K.-S, Kim S, Kim HP, Park H. Arch. Pharm. Res. 2004; 27: 278
- 25 Lu K, Chu J, Wang H, Fu X, Quan D, Ding H, Yao Q, Yu P. Tetrahedron Lett. 2013; 54: 6345
- 26 Zheng X, Meng W.-D, Xu Y.-Y, Cao J.-G, Qing F.-L. Bioorg. Med. Chem. Lett. 2003; 13: 881
- 27 Zembower DE, Zhang H. J. Org. Chem. 1998; 63: 9300
- 28 Zhou C, Dubrovsky AV, Larock RC. J. Org. Chem. 2006; 71: 1626
- 29a Likhar PR, Subhas MS, Roy M, Roy S, Kantam ML. Helv. Chim. Acta 2008; 91: 259
- 29b Zhang FJ, Li YL. Synthesis 1993; 565
- 30 Wang C.-L, Li H.-Q, Meng W.-D, Qing F.-L. Bioorg. Med. Chem. Lett. 2005; 15: 4456
- 31 Joo YH, Kim JK, Kang S.-H, Noh M.-S, Ha J.-Y, Choi JK, Lim KM, Lee CH, Chung S. Bioorg. Med. Chem. Lett. 2003; 13: 413
- 32 Khanna RN, Seshadri TR. Indian J. Chem. 1963; 1: 385
- 33 Optimized Experimental Procedure for the Synthesis of 2′-Hydroxy-4′,6′-dimethoxyacetophenone K2CO3 (7.23 g, 52.32 mmol) and Me2SO4 (2.48 mL, 26.16 mmol) were added to a solution of 2′,4′,6′-trihydroxyacetophenone (1, 2.00 g, 11.89 mmol) in acetone (50 mL). The reaction mixture was refluxed for 20 min under nitrogen atmosphere. After that, K2CO3 was filtered off, the acetone evaporated, and the residue recrystallized in EtOH affording the 2′-hydroxy-4′,6′-dimethoxyacetophenone in good yield (82%, 1.91 g).
- 34 Physical Data of (E)-2′-Hydroxy-3,4,4′,6′-tetramethoxychalcone (3b) Yellow needles; mp 156–157 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.84 and 3.92 (2 s, 2 × 3 H, 4′- and 6′-OCH3), 3.94 (s, 3 H, 4-OCH3), 3.95 (s, 3 H, 3-OCH3), 5.98 (d, 1 H, J = 2.3 Hz, H-5′), 6.12 (d, 1 H, J = 2.3 Hz, H-3′), 6.90 (d, 1 H, J = 8.4 Hz, H-5), 7.13 (d, 1 H, J = 1.8 Hz, H-2), 7.22 (dd, 1 H, J = 1.8, 8.4 Hz, H-6), 7.78 (AB, 1 H, J = 15.6 Hz, H-β), 7.83 (AB, 1 H, J = 15.6 Hz, H-α), 14.41 (s, 2′-OH, 1 H) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 55.6, 55.8, 55.9, and 56.0 (3-, 4-, 4′-, and 6′-OCH3), 91.3 (C-5′), 93.8 (C-3′), 106.3 (C-1′), 110.4 (C-2), 111.2 (C-5), 122.6 (C-6), 125.4 (C-α), 128.6 (C-1), 142.7 (C-β), 149.1 (C-3), 151.1 (C-4), 162.4 and 166.1 (C-4′ and C-6′), 168.4 (C-2′), 192.5 (C=O) ppm. ESI+-MS: m/z (%) = 345 (17) [M + H]+, 367 (100) [M + Na]+, 711 (5) [2M + Na]+. Anal. Calcd (%) for C19H20O6: C, 66.27; H, 5.85. Found: C, 65.99; H, 5.77.
- 35 General Optimized Experimental Procedure for the Synthesis of (E)-2′-Hydroxychalcones 3a,b NaOH (aq, 60%, 37 mL) was added to a solution of 2′-hydroxy-4′,6′-dimethoxyacetophenone (1.50 g, 7.645 mmol) in MeOH (37 mL; in the case of derivative a), or in MeOH–DMSO (v/v, 37:4.5 mL; in the case of derivative b). After that, the appropriate benzaldehyde 2a,b (15.04 mmol) was added, and the reaction mixture was stirred for 3 h (derivative a) and 4 h (derivative b) at r.t. Then, the mixture was poured into ice (50 g) and H2O (100 mL) and the pH adjusted to 4 with a solution of HCl (20%). After filtration, the precipitate was taken in CH2Cl2, washed repeatedly with a sat. solution of KHCO3 (1 × 300 mL) and H2O (3 × 300 mL), and the organic layer was dried over anhydrous Na2SO4. Subsequently, after solvent evaporation, the residue was recrystallized in EtOH giving the correspondent (E)-2′-hydroxychalcones 3a,b in good yields [3a (77%, 1.78 g); 3b (61%, 1.61 g)].
- 36 General Optimized Experimental Procedure for the Synthesis of 8-Iodoflavones 4a,b I2 (0.100 g; 0.3181 mmol) was added to a solution of the appropriate (E)-2′-hydroxychalcone 3a,b (0.3181 mmol) in DMSO (1.0 mL), and the reaction mixture was refluxed for 45 min under N2 atmosphere. After that, the reaction mixture was poured into ice (25 g), H2O (50 mL), and Na2S2O3·5H2O (1 g). The obtained solid was filtered, taken in CH2Cl2 (100 mL), and washed with Na2S2O3 (aq, 20%) (100 mL) and H2O (3 × 100 mL). The organic layer was dried over anhydrous Na2SO4 concentrated and purified by flash column chromatography with a mixture of EtOAc–CH2Cl2(4:1) leading to 8-iodoflavones 4a,b in good yields [4a (77%, 107.3 mg); 4b (75%, 111.7 mg)].
- 37 Physical Data of α-Hydroxy-7-iodo-4,4′,6-trimethoxyaurone (5) White powder. 1H NMR (300.13 MHz, CDCl3): δ = 3.83 (s, 3 H, 4′-OCH 3), 4.03 and 4.06 (2 s, 2 × 3 H, 5-OCH3 and 7-OCH3), 6.18 (s, 1 H, H-5), 6.84 (d, 2 H, J = 8.9 Hz, H-3′,5′), 7.77 (d, 2 H, J = 8.9 Hz, H-2′,6′) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 55.6 (4′-OCH3), 56.6 and 57.3 (4- and 6-OCH3), 58.2 (C-7), 90.0 (C-5), 101.3 (C-2), 103.6 (C-3a), 114.4 (C-3′,5′), 124.3 (C-1′), 132.2 (C-2′,6′), 161.0 (C-4 or C-6), 165.0 (C-4′), 168.2 (C-4 or C-6), 172.2 (C-7a), 188.5 (C-α), 190.5 (C-3) ppm. ESI+-MS: m/z (%) = 493 (100) [M + K]+.
- 38 Physical Data of 3,8-Di-iodo-4′,5,7-trimethoxyflavone (6) White powder. 1H NMR (300.13 MHz, CDCl3): δ = 3.90 (s, 3 H, 4′-OCH3), 4.03 (s, 6 H, 5,7-OCH3), 6.45 (s, 1 H, H-6), 7.03 (d, 2 H, J = 8.8 Hz, H-3′,5′), 8.02 (d, 2 H, J = 8.8 Hz, H-2′,6′) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 55.5 (4′-OCH3), 56.6 and 56.8 (5- and 7-OCH3), 63.9 (C-8), 89.2 (C-3), 92.0 (C-6), 106.2 (C-4a), 113.4 (C-3′,5′), 126.2 (C-1′), 132.0 (C-2′,6′), 157.6 (C-8a), 161.7 (C-2, C-5, C-7, or C-4′), 161.8 (C-2, C-5, C-7, or C-4′), 161.9 (C-2, C-5, C-7, or C-4′), 162.9 (C-5 or C-7), 172.7 (C-4) ppm. ESI+-MS: m/z (%) = 565 (94) [M + H]+, 587 (100) [M + Na]+.
- 39 Physical Data of 8-Iodo-3′,4′,5,7-tetramethoxyflavone (4b) Pale yellow powder; mp 273–275 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.97 (s, 3 H, 4′-OCH3), 4.00 (s, 3 H, 3′-OCH3), 4.04 (s, 6 H, 5- and 7-OCH3), 6.44 (s, 1 H, H-6), 6.67 (s, 1 H, H-3), 6.99 (d, 1 H, J = 9.0 Hz, H-5′), 7.63–7.67 (m, 2 H, H-2′,6′) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 56.08 and 56.14 (3′- and 4′-OCH3), 56.6 and 56.8 (5- and 7-OCH3), 64.9 (C-8), 91.8 (C-6), 107.0 (C-3), 109.2 (C-2′), 109.9 (C-4a), 111.2 (C-5′), 119.9 (C-6′), 123.6 (C-1′), 149.2 (C-3′), 151.8 (C-4′), 157.5 (C-8a), 160.9 (C-2), 162.0 and 162.6 (C-5 and C-7), 177.5 (C-4) ppm. ESI+-MS: m/z (%) = 469 (100) [M + H]+, 491 (11) [M + Na]+, 959 (40) [2M + Na]+. Anal. Calcd (%) for C19H17IO6: C, 48.74; H, 3.66. Found: C, 48.90; H, 3.64.
- 40 Physical Data of (E)-8-[2-(4-Methoxyphenyl)vinyl]-4′,5,7-trimethoxyflavone (8a) Pale yellow powder; mp 224–225 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.86 (s, 3 H, 4′′-OCH3), 3.88 (s, 3 H, 4′-OCH3), 4.03 (s, 3 H, 5-OCH3), 4.04 (s, 3 H, 7-OCH3), 6.46 (s, 1 H, H-6), 6.62 (s, 1 H, H-3), 6.93 (d, 2 H, J = 8.7 Hz, H-3′′,5′′), 6.98 (d, 2 H, J = 8.8 Hz, H-3′,5′), 7.30 (d, 1 H, J = 16.6 Hz, H-α), 7.45 (d, 1 H, J = 16.6 Hz, H-β), 7.48 (d, 2 H, J = 8.7 Hz, H-2′′,6′′), 7.86 (d, 2 H, J = 8.8 Hz, H-2′,6′) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 55.4 and 55.5 (4′- and 4′′-OCH3), 56.0 and 56.4 (5- and 7-OCH3), 91.6 (C-6), 107.4 (C-3), 108.0 (C-8), 109.1 (C-4a), 114.2 (C-3′′,5′′), 114.5 (C-3′,5′), 115.7 (C-α), 124.2 (C-1′), 127.4 (C-2′′,6′′), 127.9 (C-2′,6′), 131.3 (C-1′′), 132.4 (C-β), 156.2 (C-8a), 159.2 (C-4′′), 159.7 (C-5), 161.0 (C-2), 161.2 (C-7), 162.0 (C-4′), 178.2 (C-4) ppm. ESI+-MS: m/z (%) = 445 (100) [M + H]+, 467 (11) [M + Na]+, 911 (60) [2M + Na]+. EI+-HRMS: m/z calcd for [C27H24O6]: 444.1573; found: 444.1572.
- 41 General Optimized Experimental Procedure for the Synthesis of (E)-8-Styrylflavones 8a–c The appropriate styrene 7a,b (0.45 mmol) was added to a mixture of the appropriate 8-iodoflavone 4a,b (0.09 mmol), KCl (0.09 mmol), TBAB (0.14 mmol), K2CO3 (0.14 mmol), and PdCl2 (5.4 µmol) in NMP (1.5 mL). Each reaction mixture was heated to 100 °C for 24 h under N2 atmosphere. After this time, the mixture was poured into H2O (100 mL) and the pH was adjusted to 5 by adding dropwise a solution of HCl (50%). Afterwards, the obtained residue was extracted with CH2Cl2 (100 mL), washed with H2O (4 × 200 mL) and the organic layer dried over anhydrous Na2SO4. To remove any traces of NMP, the residue was dissolved in toluene and evaporated to dryness. Purification by TLC [two mixtures were used as eluent: first CH2Cl2–MeOH (9:1) and then CH2Cl2–acetone (4:1)] with subsequent recrystallization in EtOH lead to (E)-8-styrylflavones 8a–c in good yields [8a (87%, 34.8 mg); 8b (90%, 38.4 mg); 8c (93%, 42.2 mg)].
- 42 Physical Data of 8-[1-(4-Methoxyphenyl)vinyl]-4′,5,7-trimethoxyflavone (9a) Pale yellow powder; mp 151–152 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.78, 3.82, 3.88, and 4.05 (4 s, 4 × 3 H, 4′-, 4′′′-, 5-, and 7-OCH3), 5.25 (d, 1 H, J = 0.7 Hz, H-2′′a), 6.02 (d, 1 H, J = 0.7 Hz, H-2′′b), 6.50 (s, 1 H, H-6), 6.55 (s, 1 H, H-3), 6.83 (d, 2 H, J = 8.8 Hz, H-3′,5′ or H-3′′′,5′′′), 6.84 (d, 2 H, J = 8.9 Hz, H-3′,5′or H-3′′′,5′′′), 7.32 (d, 2 H, J = 8.8 Hz, H-2′′′,6′′′), 7.46 (d, 2 H, J = 8.9 Hz, H-2′,6′) ppm. ESI+-MS: m/z (%) = 445 (100) [M + H]+, 467 (32) [M + Na]+, 911 (19) [2M + Na]+. ESI+-HRMS: m/z calcd for [C27H24O6 + H+] 445.1646; found: 445.1639.
- 43 Physical Data of 4′,5,7-Trimethoxyflavone (10) White powder; mp 154–156 °C. 1H NMR (300.13 MHz, CDCl3): δ = 3.88 (s, 3 H, 4′-OCH3), 3.91 (s, 3 H, 7-OCH3), 3.96 (s, 3 H, 5-OCH3), 6.37 (d, 1 H, J = 2.2 Hz, H-6), 6.56 (d, 1 H, J = 2.2 Hz, H-8), 6.60 (s, 1 H, H-3), 7.00 (d, 2 H, J = 8.8 Hz, H-3′,5′), 7.83 (d, 2 H, J = 8.8 Hz, H-2′,6′) ppm. 13C NMR (75.47 MHz, CDCl3): δ = 55.5 (4′-OCH3), 55.8 (7-OCH3), 56.5 (5-OCH3), 92.8 (C-8), 96.1 (C-6), 107.7 (C-3), 109.2 (C-4a), 114.4 (C-3′,5′), 123.9 (C-1′), 127.6 (C-2′,6′), 159.9 (C-8a), 160.1 (C-2), 160.9 (C-5), 162.0 (C-4′), 163.9 (C-7), 177.7 (C-4) ppm. ESI+-MS: m/z (%) = 313 (43) [M + H]+, 335 (27) [M + Na]+, 647 (100) [2M + Na]+.
For biological activities of 2-styrylchromones, see:
For biological activities of 3-styrylchromones, see: