RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2015; 26(08): 1085-1088
DOI: 10.1055/s-0034-1380273
DOI: 10.1055/s-0034-1380273
letter
Concise Synthesis of (–)-Axenol by Using Stereocontrolled Allylic Substitution
Weitere Informationen
Publikationsverlauf
Received: 24. Dezember 2014
Accepted after revision: 05. Februar 2015
Publikationsdatum:
05. März 2015 (online)
Abstract
Synthesis of (–)-axenol was achieved stereoselectively through allylic substitution to form the quaternary carbon followed by ring-closing metathesis. The key allylic picolinate was synthesized from natural menthol.
Key words
drug discovery - allylic substitution - quaternary carbon - copper reagent - ring-closing metathesisSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380273.
- Supporting Information
-
References and Notes
- 1 Kurvyakov PI, Gatilov YV, Khan VA, Dubovenko ZV, Pentegova VA. Chem. Nat. Prod. 1979; 15: 138
- 2 Barrero AF, Sanchez JF, Oltra JE, Altarejos J, Ferrol N, Barragan A. Phytochemistry 1991; 30: 1551
- 3 Rosa SD, Giulio AD, Iodice C, Zavodink N. Phytochemistry 1994; 37: 1327
- 4 Weyerstahl P, Marschall H, Weirauch M, Thefeld K, Surburg H. Flavour Fragr. J. 1998; 13: 295
- 5 Barrow CJ, Blunt JW, Munro MH. G. Aust. J. Chem. 1988; 41: 1755
- 6 Bozan B, Ozek T, Kurkcuoglu M, Kirimer N, Baser KH. C. Planta Med. 1999; 65: 781
- 7a Angerhofer CK, Pezzuto JM, König GM, Wright AD, Sticher O. J. Nat. Prod. 1992; 55: 1787
- 7b Wright AD, Wang H, Gurrath M, König GM, Kocak G, Neumann G, Loria P, Foley M, Tilley L. J. Med. Chem. 2001; 44: 873
- 8 Hirota H, Tomono Y, Fusetani N. Tetrahedron 1996; 52: 2359
- 9a Caine D, Deutsch H. J. Am. Chem. Soc. 1978; 100: 8030
- 9b Oesterreich K, Spitzner D. Tetrahedron 2002; 58: 4331
- 9c Oesterreich K, Klein I, Spitzner D. Synlett 2002; 1712
- 9d Ohira S, Yoshihara N, Hasegawa T. Chem. Lett. 1998; 739
- 9e Blay G, Collado AM, García B, Pedro JR. Tetrahedron 2005; 61: 10853
- 9f Nakazaki A, Era T, Kobayashi S. Chem. Pharm. Bull. 2007; 55: 1606
- 9g Nakazaki A, Era T, Kobayashi S. Chem. Lett. 2008; 37: 770
- 9h Tamura K, Nakazaki A, Kobayashi S. Synlett 2009; 2449
- 10a Nakazaki A, Kobayashi S. Synlett 2012; 23: 1427
- 10b Fujioka H, Yoshida Y, Kita Y. J. Synth. Org. Chem. Jpn. 2003; 61: 133
- 11 Kaneko Y, Kiyotsuka Y, Acharya HP, Kobayashi Y. Chem. Commun. 2010; 46: 5482
- 12 Kawashima H, Kaneko Y, Sakai M, Kobayashi Y. Chem. Eur. J. 2014; 20: 272
- 13 Kiguchi T, Tsurusaki Y, Yamada S, Aso M, Tanaka M, Sakai K, Suemune H. Chem. Pharm. Bull. 2000; 48: 1536
- 14 Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183
- 15a Shimoji K, Taguchi H, Oshima K, Yamamoto H, Nozaki H. J. Am. Chem. Soc. 1974; 96: 1620
- 15b Taguchi H, Shimoji K, Yamamoto H, Nozaki H. Bull. Chem. Soc. Jpn. 1974; 47: 2529
- 16 Regioisomer iii was synthesized by the method shown in Scheme 5. Allylic substitution of i with CH2=(Me)(CH2)2MgBr under Goering’s conditions afforded ii, regioselectively, which, upon deprotection, furnished iii in a good yield. See: Underiner TL, Paisley SD, Schmitter J, Lesheski L, Goering HL. J. Org. Chem. 1989; 54: 2369
- 17 The diagnostic absorbance in the 1H NMR spectra: 7b: 1H NMR: δ = 3.29 (t, J = 10.5 Hz, 1 H), 4.72 (br s, 1 H), 4.75 (br. s, 1 H), 5.22 (dd, J = 17.7, 1.7 Hz, 1 H), 5.37 (dd, J = 11.4, 1.7 Hz, 1 H), 6.12 (dd, J = 11.4, 17.7 Hz, 1 H); 18: 1H NMR δ = 4.57 (br. s, 1 H), 4.68 (br s, 1 H), 4.71 (br s, 1 H), 5.29 (t, J = 7.5 Hz, 1 H).
- 18 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
- 19 Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
- 20 A similar reactivity of the catalysts was reported: see refs. 9b and 9c.
- 21 The 1H NMR data of 4 presented in ref. 9e was insufficient.
- 22 Karimi B, Golshani B. J. Org. Chem. 2000; 65: 7228
- 23 To an ice-cold suspension of CuBr·SMe2 (67.3 mg, 0.327 mmol) and ZnI2 (104 mg, 0.325 mmol) in THF (0.5 mL) was added a solution of (3-methylbut-3-en-1-yl)magnesium bromide (0.57 M in THF, 1.15 mL, 0.656 mmol) dropwise. The solution was stirred at 0 °C for 30 min, cooled to −40 °C, and a solution of TMS ether 6b (80.5 mg, 0.214 mmol) in THF (2 mL) was added. The resulting solution was warmed to −20 °C over 2 h, and diluted with sat. aq NH4Cl and EtOAc with vigorous stirring. The layers were separated and the aqueous layer was extracted with EtOAc three times. The combined extracts were washed with brine, dried over MgSO4, and concentrated to give 7c, which was used for the next reaction without further purification. The above product in H2O–AcOH–THF (2.7 mL, 3:5:10) was stirred at r.t. for 1 h, and diluted with sat. aq NaHCO3 and CH2Cl2 with vigorous stirring. The layers were separated and the aqueous layer was extracted with CH2Cl2 three times. The combined extracts were washed with brine, dried over MgSO4, and concentrated to give a residue, which was purified by chromatography on silica gel (hexane–EtOAc) to afford alcohol 7b (45.7 mg, 85% from TMS ether 6b) as a colorless oil: 1H NMR (300 MHz, CDCl3): δ = 0.77 (d, J = 6.6 Hz, 3 H), 0.80 (d, J = 6.9 Hz, 3 H), 0.90 (d, J = 7.2 Hz, 3 H), 0.99–1.12 (m, 2 H), 1.18–2.21 (m, 10 H), 1.78 (s, 3 H), 3.29 (t, J = 10.5 Hz, 1 H), 4.72 (br. s, 1 H), 4.75 (br. s, 1 H), 5.22 (dd, J = 17.7, 1.7 Hz, 1 H), 5.37 (dd, J = 11.4, 1.7 Hz, 1 H), 6.12 (dd, J = 17.7, 11.4 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 15.6 (+), 15.9 (+), 21.1 (+), 22.8 (+), 23.2 (–), 26.3 (+), 28.6 (–), 29.5 (–), 30.8 (–), 34.9 (+), 45.1 (+), 48.0 (–), 72.5 (+), 109.8 (–), 118.1 (–), 139.2 (+), 146.7 (–). [α]D 21 –19.0 (c 0.61, CHCl3). HRMS (FAB): m/z [M + H]+ calcd for C17H31O: 251.2375; found: 251.2371. To a solution of Hoveyda–Grubbs 2nd generation catalyst (2.8 mg, 0.0045 mmol) in degassed CH2Cl2 (0.1 mL) was added alcohol 7b (12.3 mg, 0.0491 mmol) in degassed CH2Cl2 (0.9 mL). The mixture was stirred and heated to reflux for 2 days, and purified directly by chromatography on silica gel (hexane–EtOAc) to afford (–)-axenol 4 (10.6 mg, 97%) as a colorless oil: 1H NMR (300 MHz, CDCl3): δ = 0.79 (d, J = 6.6 Hz, 3 H), 0.80 (d, J = 6.9 Hz, 3 H), 0.90 (d, J = 7.2 Hz, 3 H), 0.98–1.13 (m, 3 H), 1.14–1.28 (m, 1 H), 1.30–1.45 (m, 1 H), 1.46–1.61 (m, 2 H), 1.72–1.83 (m, 1 H), 1.79 (s, 3 H), 2.03–2.36 (m, 4 H), 3.07 (t, J = 10.4 Hz, 1 H), 5.14 (q, J = 1.6 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 15.8 (+), 17.0 (+), 17.3 (+), 21.2 (+), 23.2 (–), 26.2 (+), 31.9 (–), 33.2 (–), 36.9 (–), 40.8 (+), 47.1 (+), 61.3 (–), 78.4 (+), 121.8 (+), 147.3 (–). The 1H and 13C NMR spectra were consistent with those reported.9f, 21 [α]D 20 –37.5 (c 0.82, CHCl3); Lit.9e [α]D 25 –35.0 (c 1.2, CHCl3).