Synlett 2015; 26(13): 1900-1904
DOI: 10.1055/s-0034-1380442
letter
© Georg Thieme Verlag Stuttgart · New York

A Catalyst-Free Process for the Direct Oxidative Synthesis of Form­anilides from Arylamines and Aldehydes under Air Atmosphere

Yuancheng Qin*
a   Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, FP. R. of China   Email: qinyuancheng@hotmail.com   Email: luoxubiao@126.com
,
Yuanyuan Cheng
a   Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, FP. R. of China   Email: qinyuancheng@hotmail.com   Email: luoxubiao@126.com
,
Xubiao Luo*
a   Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, FP. R. of China   Email: qinyuancheng@hotmail.com   Email: luoxubiao@126.com
,
Mingjun Li
a   Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, FP. R. of China   Email: qinyuancheng@hotmail.com   Email: luoxubiao@126.com
,
Yu Xie
a   Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, FP. R. of China   Email: qinyuancheng@hotmail.com   Email: luoxubiao@126.com
,
Yunhua Gao
b   Chinese Academy of Sciences, TIPC, Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Beijing 100190, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 21 April 2015

Accepted after revision: 17 May 2015

Publication Date:
09 July 2015 (online)


Abstract

An efficient and catalyst-free process for the direct oxidative synthesis of formanilides from primary aromatic amines and aliphatic aldehydes has been developed under mild aerobic oxidation conditions. The isotope-labeling experiments indicated that the oxygen atom of the formanilide originated from dioxygen.

Supporting Information

 
  • References and Notes

    • 1a Seebach D, Aebi JD. Tetrahedron Lett. 1984; 25: 2545
    • 1b Jackson A, Meth-Cohn O. J. Chem. Soc., Chem. Commun. 1995; 1319
    • 1c Chen B.-C, Bednarz MS, Zhao R, Sundeen JE, Chen P, Shen Z, Skoumbourdis AP, Barrish JC. Tetrahedron Lett. 2000; 41: 5453
    • 1d Kobayashi K, Nagato S, Kawakita M, Morikawa O, Konishi H. Chem. Lett. 1995; 24: 575
    • 1e Kakehi A, Ito S, Hayashi S, Fujii T. Bull. Chem. Soc. Jpn. 1995; 68: 3573
    • 1f Gim H, Kang B, Jeon R. Arch. Pharm. Res. 2007; 30: 1055
    • 1g Lohray BB, Baskaran S, Srinivasa Rao B, Yadi Reddy B, Nageswara Rao I. Tetrahedron Lett. 1999; 40: 4855
    • 2a Kobayashi S, Nishio K. J. Org. Chem. 1994; 59: 6620
    • 2b Kobayashi S, Yasuda M, Hachiya I. Chem. Lett. 1996; 25: 407
    • 2c Iseki K, Mizuno S, Kuroki Y, Kobayashi Y. Tetrahedron 1999; 55: 977
  • 3 Downie IM, Earle MJ, Heaney H, Shuhaibar KF. Tetrahedron 1993; 49: 4015
  • 4 Sheehan JC, Yang D.-DH. J. Am. Chem. Soc. 1958; 80: 1154
    • 5a Hosseini-Sarvari M, Sharghi H. J. Org. Chem. 2006; 71: 6652
    • 5b Desai B, Danks TN, Wagner G. Tetrahedron Lett. 2005; 46: 955
    • 5c Das B, Krishnaiah M, Balasubramanyam P, Veeranjaneyulu B, Nandan Kumar D. Tetrahedron Lett. 2008; 49: 2225
    • 5d Brahmachari G, Laskar S. Tetrahedron Lett. 2010; 51: 2319
  • 6 Olah GA, Kuhn SJ. J. Am. Chem. Soc. 1960; 82: 2380
  • 7 Blicke FF, Lu C.-J. J. Am. Chem. Soc. 1952; 74: 3933
    • 8a Ganapati Reddy P, Kishore Kumar GD, Baskaran S. Tetrahedron Lett. 2000; 41: 9149
    • 8b Pratap TV, Baskaran S. Tetrahedron Lett. 2001; 42: 1983
  • 9 Bao K, Zhang W, Bu X, Song Z, Zhang L, Cheng M. Chem. Commun. 2008; 5429
    • 10a Jessop PG, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 344
    • 10b Tumma H, Nagaraju N, Reddy KV. J. Mol. Catal. A: Chem. 2009; 310: 121
    • 11a Pettit G, Kalnins M, Liu T, Thomas E, Parent K. J. Org. Chem. 1961; 26: 2563
    • 11b Djuric SW. J. Org. Chem. 1984; 49: 1311
  • 12 Neveux M, Bruneau C, Dixneuf PH. J. Chem. Soc., Perkin Trans. 1 1991; 1197
  • 13 Preedasuriyachai P, Kitahara H, Chavasiri W, Sakurai H. Chem. Lett. 2010; 39: 1174
  • 14 Witkop B. J. Am. Chem. Soc. 1956; 78: 2873
  • 15 General Procedure To a mixture of p-methoxyaniline (1a, 0.5 mmol) and cyclohexanecarboxaldehyde (2e, 0.6 mmol), and MeCN (1.5 mL) in a 25mL round-bottomed flask at 60 °C under air, the reaction vessel was allowed to stir at 60 °C for 24 h. After reaction, the resulting mixture was isolated by column chromatography on silica gel with EtOAc–PE (1:2) to obtain product 3a as brown solid; yield 88%. 1H NMR (600 MHz, CDCl3): δ = 8.51 (d, 1 H, J = 11.3 Hz), 8.31 (s, 1 H), 8.17 (br s, 1 H), 7.49 (br s, 1 H), 7.45–6.85 (m, 8 H, ArH), 3.80 (s, 3 H), 3.78 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 163.2, 159.1, 157.6, 156.7, 130.0, 129.6, 121.8, 121.6, 114.9, 114.2, 55.6, 55.5. ESI-HRMS: m/z [M + Na+] calcd for C8H9NNaO2: 174.0525; found: 174.0529.
    • 16a Wasserman HH, Terao S. Tetrahedron Lett. 1975; 16: 1735
    • 16b Ando W, Saiki T, Migita T. J. Am. Chem. Soc. 1975; 97: 5028
    • 16c Sivaguru J, Solomon MR, Poon T, Jockusch S, Bosio SG, Adam W, Turro NJ. Acc. Chem. Res. 2008; 41: 387
    • 16d Christ T, Kulzer F, Bordat P, Basché T. Angew. Chem. Int. Ed. 2001; 40: 4192
    • 17a Snider BB, Ron E. J. Am. Chem. Soc. 1985; 107: 8160
    • 17b Yamaguchi K, Yabushita S, Fueno T, Houk KN. J. Am. Chem. Soc. 1981; 103: 5043
    • 17c Saito I, Matsugo S, Matsuura T. J. Am. Chem. Soc. 1979; 101: 7332
    • 17d Achmatowicz O, Szymoniak J. J. Org. Chem. 1980; 45: 4774
    • 17e Orfanopoulos M, Stratakis M, Elemes Y, Jensen F. J. Am. Chem. Soc. 1991; 113: 3180
    • 17f Malhotra SK, Hostynek JJ, Lundin AF. J. Am. Chem. Soc. 1968; 90: 6565