Synthesis 2015; 47(13): 1861-1868
DOI: 10.1055/s-0034-1380497
paper
© Georg Thieme Verlag Stuttgart · New York

Ligand-Free Palladium-Catalyzed Hydroxycarbonylation of Aryl Halides under Ambient Conditions: Synthesis of Aromatic Carboxylic Acids and Aromatic Esters

Wei Han*
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P. R. of China
b   Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China   Email: hanwei@njnu.edu.cn
,
Fengli Jin
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P. R. of China
,
Qing Zhou
a   Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No. 1, Nanjing 210023, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 16 January 2015

Accepted after revision: 03 March 2015

Publication Date:
30 March 2015 (online)


Abstract

Aryl halides were readily converted into their corresponding aromatic carboxylic acids in high yields with high selectivity by ligand-free palladium-catalyzed hydroxycarbonylation at room temperature and atmospheric pressure. The new method is operationally simple and scalable. In addition, aromatic esters were easily synthesized through one-pot hydroxycarbonylation/alkylation with alkyl halides.

Supporting Information

 
  • References

    • 1a Larghi EL, Operto MA, Torres R, Kaufman TS. Bioorg. Med. Chem. Lett. 2009; 19: 6172
    • 1b Navarro I, Pöverlein C, Schlingmann G, Barrett AG. M. J. Org. Chem. 2009; 74: 8139
    • 1c Maag H. Prodrugs of Carboxylic Acids . In Prodrugs . Vol. V. Stella V, Borchardt R, Hageman M, Oliyai R, Maag H, Tilley J. Springer; New York: 2007: 703
    • 1d Bew SP. Carboxylic Acids . In Comprehensive Organic Functional Group Transformations II . Katritzky AR, Taylor RJ. K. Elsevier; Oxford: 2005: 19
    • 1e Ogliaruso MA, Wolfe JF. Synthesis of Carboxylic Acids, Esters, and Their Derivatives . Patai S, Rappoport Z. Wiley; New York: 1991
    • 2a Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
    • 2b Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 5370
    • 2c Gadakh AV, Dinesh C, Rindhe SS, Karale BK. Synth. Commun. 2012; 42: 658
    • 2d Schareina T, Zapf A, Cotte A, Gotta M, Beller M. Adv. Synth. Catal. 2010; 352: 1205
    • 2e Berger P, Bessmernykh A, Caille J.-C, Mignonac S. Synthesis 2006; 3106
    • 2f Lesma G, Sacchetti A, Silvani A. Synthesis 2006; 594
    • 2g Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
    • 2h Cacchi S, Fabrizi G, Goggiamani A. Org. Lett. 2003; 5: 4269

    • For examples of Pd-catalyzed carbonylation with alkyl formate, see:
    • 2i Ko S, Lee C, Choi MG, Na Y, Chang S. J. Org. Chem. 2003; 68: 1607
    • 2j Carpentier JF, Castanet Y, Brocard J, Mortreux A, Petit F. Tetrahedron Lett. 1991; 32: 4705
    • 2k Pri-Bar I, Buchman O. J. Org. Chem. 1988; 53: 624
  • 3 For recent reviews, see ref. 2f and: Odell LR, Russo F, Larhed M. Synlett 2012; 685
  • 4 Friis SD, Andersen TL, Skrydstrup T. Org. Lett. 2013; 15: 1378

    • For some recent reviews on Pd-catalyzed carbonylations of aryl halides with CO, see:
    • 5a Gadge ST, Bhanage BM. RSC Adv. 2014; 4: 10367
    • 5b Fang W, Zhu H, Deng Q, Liu S, Liu X, Shen Y, Tu T. Synthesis 2014; 46: 1689
    • 5c Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 5d Wu X.-F, Beller M. Transition Metal Catalyzed Carbonylation Reactions-Carbonylative Activation of C–X Bonds. Springer; Heidelberg: 2013
    • 5e Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 5f Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 5g Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
    • 5h Brennfuhrer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114

    • Other reviews on carbonylation with CO, see:
    • 5i Wu LP, Fang XJ, Liu Q, Jackstell R, Beller M, Wu X.-F. ACS Catal. 2014; 4: 2977
    • 5j Wu X.-F, Fang XJ, Wu LP, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
    • 5k Wu X.-F, Neumann H, Beller M. ChemSusChem 2013; 6: 229
    • 5l Wu X.-F, Neumann H. ChemCatChem 2012; 4: 447
    • 6a Tsai SW, Huang SH, Lee HS, Tsai FY. J. Chin. Chem. Soc. 2013; 60: 769
    • 6b Xue LQ, Shi LJ, Han Y, Xia CG, Huynh HV, Li FW. Dalton Trans. 2011; 40: 7632
    • 6c Wittmann S, Schätz A, Grass RN, Stark WJ, Reiser O. Angew. Chem. Int. Ed. 2010; 49: 1867
    • 6d Cacchi S, Cotet CL, Fabrizi G, Forte G, Goggiamani A, Martín L, Martínez S, Molins E, Moreno-Mañas M, Petrucci F, Roig A, Vallribera A. Tetrahedron 2007; 63: 2519
    • 6e Mizushima E, Hayashi T, Tanaka M. Top. Catal. 2004; 29: 163
    • 6f Calò V, Giannoccaro P, Nacci A, Monopoli A. J. Organomet. Chem. 2002; 645: 152
    • 6g Cheprakov AV, Ponomareva NV, Beletskaya IP. J. Organomet. Chem. 1995; 486: 297
    • 6h Bumagin NA, Nikitin KV, Beletskaya IP. J. Organomet. Chem. 1988; 358: 563
    • 7a Barnard CF. J. Organometallics 2008; 27: 5402
    • 7b Barnard CF. J. Org. Process Res. Dev. 2008; 12: 566
    • 7c Maitlis PM, Haynes A. Synthesis Based on Carbon Monoxide . In Metal-Catalysis in Industrial Organic Processes . Chiusoli GP, Maitlis PM. RSC Publishing; Cambridge: 2006

      Seminal examples of hydroxycarbonylation reactions of aryl-X under ambient pressure and in the presence of phosphine ligands, see:
    • 8a Watson DA, Fan XX, Buchwald SL. J. Org. Chem. 2008; 73: 7096
    • 8b Uozumi Y, Watanabe T. J. Org. Chem. 1999; 64: 6921

    • Although two examples of hydroxycarbonylation of aryl iodides at ambient conditions was reported, quite narrow scope of aryl iodide was investigated, see:
    • 8c Ori M, Toda N, Takami K, Tago K, Kogen H. Angew. Chem. Int. Ed. 2003; 42: 2540
    • 8d Beletskaya IP, Ganina OG. React. Kinet., Mech. Catal. 2010; 99: 1
  • 9 Zhou Q, Wei SH, Han W. J. Org. Chem. 2014; 79: 1454
    • 10a Zhong YZ, Han W. Chem. Commun. 2014; 50: 3874
    • 10b Zhong YZ, Gong XX, Zhu XS, Ni ZC, Wang HY, Fu JL, Han W. RSC Adv. 2014; 4: 63216
    • 10c Cheng LJ, Zhong YZ, Ni ZC, Du HY, Jin FL, Rong Q, Han W. RSC Adv. 2014; 4: 44312
    • 10d Yao LF, Zhou Q, Han W, Wei SH. Eur. J. Org. Chem. 2012; 6856
    • 11a Koide M, Ishida M, Morino J, Hasegawa S, Naridzuka S, Kume K. JP 20001694148, 2000
    • 11b Wright Jr WB, Press JB, Chan PS, Marsico JW, Haug MF, Lucas J, Tauber J, Tomcufcik AS. J. Med. Chem. 1986; 29: 523
    • 12a Pachón LD, Rothenberg G. Appl. Organomet. Chem. 2008; 22: 288
    • 12b Astruc D. Inorg. Chem. 2007; 46: 1884
    • 12c Thathagar MB, Elshof JE, Rothenberg G. Angew. Chem. Int. Ed. 2006; 45: 2886
    • 12d Phan NT. S, Van der Sluis M, Jones CJ. Adv. Synth. Catal. 2006; 348: 609
    • 12e Thathagar MB, Beckers J, Rothenberg G. Adv. Synth. Catal. 2003; 345: 979
  • 13 Widegren JA, Finke RG. J. Mol. Catal. A: Chem. 2003; 198: 317
  • 14 Horiuchi H, Hosaka M, Mashio H, Terata M, Ishida S, Kyushin S, Okutsu T, Takeuchi T, Hiratsuka H. Chem. Eur. J. 2014; 20: 6054
  • 15 Makida Y, Marelli E, Slawin AM. Z, Nolan SP. Chem. Commun. 2014; 50: 8010
  • 16 Zou XZ, Qiu ZX. J. Fluorine Chem. 2002; 116: 173
  • 17 Zhao JF, Mueck-Lichtenfeld C, Studer A. Adv. Synth. Catal. 2013; 355: 1098
  • 18 Cant AA, Bhalla R, Pimlott SL, Sutherland A. Chem. Commun. 2012; 48: 3993
  • 19 Zhang X, Zhang W.-Z, Shi L.-L, Guo C.-X, Zhang L.-L, Lu X.-B. Chem. Commun. 2012; 48: 6292
  • 20 Former C, Klaerner G, Wagner M, Muellen K. Adv. Synth. Catal. 1998; 340: 367
  • 21 Yang DS, Yang HJ, Fu H. Chem. Commun. 2011; 47: 2348
  • 22 Tschaen BA, Schmink JR, Molander GA. Org. Lett. 2013; 15: 500
  • 23 Liu J, Shao CD, Zhang YH, Shi GF, Pan SL. Org. Biomol. Chem. 2014; 12: 2637