Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(13): 1861-1868
DOI: 10.1055/s-0034-1380497
DOI: 10.1055/s-0034-1380497
paper
Ligand-Free Palladium-Catalyzed Hydroxycarbonylation of Aryl Halides under Ambient Conditions: Synthesis of Aromatic Carboxylic Acids and Aromatic Esters
Further Information
Publication History
Received: 16 January 2015
Accepted after revision: 03 March 2015
Publication Date:
30 March 2015 (online)
Abstract
Aryl halides were readily converted into their corresponding aromatic carboxylic acids in high yields with high selectivity by ligand-free palladium-catalyzed hydroxycarbonylation at room temperature and atmospheric pressure. The new method is operationally simple and scalable. In addition, aromatic esters were easily synthesized through one-pot hydroxycarbonylation/alkylation with alkyl halides.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380497.
- Supporting Information
-
References
- 1a Larghi EL, Operto MA, Torres R, Kaufman TS. Bioorg. Med. Chem. Lett. 2009; 19: 6172
- 1b Navarro I, Pöverlein C, Schlingmann G, Barrett AG. M. J. Org. Chem. 2009; 74: 8139
- 1c Maag H. Prodrugs of Carboxylic Acids . In Prodrugs . Vol. V. Stella V, Borchardt R, Hageman M, Oliyai R, Maag H, Tilley J. Springer; New York: 2007: 703
- 1d Bew SP. Carboxylic Acids . In Comprehensive Organic Functional Group Transformations II . Katritzky AR, Taylor RJ. K. Elsevier; Oxford: 2005: 19
- 1e Ogliaruso MA, Wolfe JF. Synthesis of Carboxylic Acids, Esters, and Their Derivatives . Patai S, Rappoport Z. Wiley; New York: 1991
- 2a Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
- 2b Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 5370
- 2c Gadakh AV, Dinesh C, Rindhe SS, Karale BK. Synth. Commun. 2012; 42: 658
- 2d Schareina T, Zapf A, Cotte A, Gotta M, Beller M. Adv. Synth. Catal. 2010; 352: 1205
- 2e Berger P, Bessmernykh A, Caille J.-C, Mignonac S. Synthesis 2006; 3106
- 2f Lesma G, Sacchetti A, Silvani A. Synthesis 2006; 594
- 2g Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
- 2h Cacchi S, Fabrizi G, Goggiamani A. Org. Lett. 2003; 5: 4269
- 2i Ko S, Lee C, Choi MG, Na Y, Chang S. J. Org. Chem. 2003; 68: 1607
- 2j Carpentier JF, Castanet Y, Brocard J, Mortreux A, Petit F. Tetrahedron Lett. 1991; 32: 4705
- 2k Pri-Bar I, Buchman O. J. Org. Chem. 1988; 53: 624
- 3 For recent reviews, see ref. 2f and: Odell LR, Russo F, Larhed M. Synlett 2012; 685
- 4 Friis SD, Andersen TL, Skrydstrup T. Org. Lett. 2013; 15: 1378
- 5a Gadge ST, Bhanage BM. RSC Adv. 2014; 4: 10367
- 5b Fang W, Zhu H, Deng Q, Liu S, Liu X, Shen Y, Tu T. Synthesis 2014; 46: 1689
- 5c Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 5d Wu X.-F, Beller M. Transition Metal Catalyzed Carbonylation Reactions-Carbonylative Activation of C–X Bonds. Springer; Heidelberg: 2013
- 5e Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
-
5f Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
- 5g Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
- 5h Brennfuhrer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
- 5i Wu LP, Fang XJ, Liu Q, Jackstell R, Beller M, Wu X.-F. ACS Catal. 2014; 4: 2977
- 5j Wu X.-F, Fang XJ, Wu LP, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
- 5k Wu X.-F, Neumann H, Beller M. ChemSusChem 2013; 6: 229
- 5l Wu X.-F, Neumann H. ChemCatChem 2012; 4: 447
- 6a Tsai SW, Huang SH, Lee HS, Tsai FY. J. Chin. Chem. Soc. 2013; 60: 769
- 6b Xue LQ, Shi LJ, Han Y, Xia CG, Huynh HV, Li FW. Dalton Trans. 2011; 40: 7632
-
6c Wittmann S, Schätz A, Grass RN, Stark WJ, Reiser O. Angew. Chem. Int. Ed. 2010; 49: 1867
- 6d Cacchi S, Cotet CL, Fabrizi G, Forte G, Goggiamani A, Martín L, Martínez S, Molins E, Moreno-Mañas M, Petrucci F, Roig A, Vallribera A. Tetrahedron 2007; 63: 2519
- 6e Mizushima E, Hayashi T, Tanaka M. Top. Catal. 2004; 29: 163
- 6f Calò V, Giannoccaro P, Nacci A, Monopoli A. J. Organomet. Chem. 2002; 645: 152
- 6g Cheprakov AV, Ponomareva NV, Beletskaya IP. J. Organomet. Chem. 1995; 486: 297
- 6h Bumagin NA, Nikitin KV, Beletskaya IP. J. Organomet. Chem. 1988; 358: 563
- 7a Barnard CF. J. Organometallics 2008; 27: 5402
- 7b Barnard CF. J. Org. Process Res. Dev. 2008; 12: 566
- 7c Maitlis PM, Haynes A. Synthesis Based on Carbon Monoxide . In Metal-Catalysis in Industrial Organic Processes . Chiusoli GP, Maitlis PM. RSC Publishing; Cambridge: 2006
- 8a Watson DA, Fan XX, Buchwald SL. J. Org. Chem. 2008; 73: 7096
- 8b Uozumi Y, Watanabe T. J. Org. Chem. 1999; 64: 6921
- 8c Ori M, Toda N, Takami K, Tago K, Kogen H. Angew. Chem. Int. Ed. 2003; 42: 2540
- 8d Beletskaya IP, Ganina OG. React. Kinet., Mech. Catal. 2010; 99: 1
- 9 Zhou Q, Wei SH, Han W. J. Org. Chem. 2014; 79: 1454
- 10a Zhong YZ, Han W. Chem. Commun. 2014; 50: 3874
- 10b Zhong YZ, Gong XX, Zhu XS, Ni ZC, Wang HY, Fu JL, Han W. RSC Adv. 2014; 4: 63216
- 10c Cheng LJ, Zhong YZ, Ni ZC, Du HY, Jin FL, Rong Q, Han W. RSC Adv. 2014; 4: 44312
- 10d Yao LF, Zhou Q, Han W, Wei SH. Eur. J. Org. Chem. 2012; 6856
- 11a Koide M, Ishida M, Morino J, Hasegawa S, Naridzuka S, Kume K. JP 20001694148, 2000
- 11b Wright Jr WB, Press JB, Chan PS, Marsico JW, Haug MF, Lucas J, Tauber J, Tomcufcik AS. J. Med. Chem. 1986; 29: 523
- 12a Pachón LD, Rothenberg G. Appl. Organomet. Chem. 2008; 22: 288
- 12b Astruc D. Inorg. Chem. 2007; 46: 1884
- 12c Thathagar MB, Elshof JE, Rothenberg G. Angew. Chem. Int. Ed. 2006; 45: 2886
- 12d Phan NT. S, Van der Sluis M, Jones CJ. Adv. Synth. Catal. 2006; 348: 609
- 12e Thathagar MB, Beckers J, Rothenberg G. Adv. Synth. Catal. 2003; 345: 979
- 13 Widegren JA, Finke RG. J. Mol. Catal. A: Chem. 2003; 198: 317
- 14 Horiuchi H, Hosaka M, Mashio H, Terata M, Ishida S, Kyushin S, Okutsu T, Takeuchi T, Hiratsuka H. Chem. Eur. J. 2014; 20: 6054
-
15 Makida Y, Marelli E, Slawin AM. Z, Nolan SP. Chem. Commun. 2014; 50: 8010
- 16 Zou XZ, Qiu ZX. J. Fluorine Chem. 2002; 116: 173
- 17 Zhao JF, Mueck-Lichtenfeld C, Studer A. Adv. Synth. Catal. 2013; 355: 1098
- 18 Cant AA, Bhalla R, Pimlott SL, Sutherland A. Chem. Commun. 2012; 48: 3993
- 19 Zhang X, Zhang W.-Z, Shi L.-L, Guo C.-X, Zhang L.-L, Lu X.-B. Chem. Commun. 2012; 48: 6292
- 20 Former C, Klaerner G, Wagner M, Muellen K. Adv. Synth. Catal. 1998; 340: 367
- 21 Yang DS, Yang HJ, Fu H. Chem. Commun. 2011; 47: 2348
- 22 Tschaen BA, Schmink JR, Molander GA. Org. Lett. 2013; 15: 500
- 23 Liu J, Shao CD, Zhang YH, Shi GF, Pan SL. Org. Biomol. Chem. 2014; 12: 2637
For examples of Pd-catalyzed carbonylation with alkyl formate, see:
For some recent reviews on Pd-catalyzed carbonylations of aryl halides with CO, see:
Other reviews on carbonylation with CO, see:
Seminal examples of hydroxycarbonylation reactions of aryl-X under ambient pressure and in the presence of phosphine ligands, see:
Although two examples of hydroxycarbonylation of aryl iodides at ambient conditions was reported, quite narrow scope of aryl iodide was investigated, see: