Synlett 2015; 26(09): 1222-1224
DOI: 10.1055/s-0034-1380504
letter
© Georg Thieme Verlag Stuttgart · New York

Four-Component Reaction of Trialkyl Phosphites, Amines, and Electron-Deficient Acetylenic Compounds: Synthesis of Phosphonate Derivatives in Water

Zinatossadat Hossaini*
a   Department of Chemistry, Qaemshahr Branch, Islamic Azad University, P.O.Box 163, Qaemshahr, Iran
,
Faramarz Rostami-Charati
b   Department of Chemistry, Faculty of Science, Gonbad Kavous University, P.O.Box 163, Gonbad, Iran
,
Mahboubeh Ghasemian
c   Department of Chemistry, North of Tehran Branch, Islamic Azad University, P.O.Box 1924, Tehran, Iran
,
Saeid Afshari Sharif Abad
a   Department of Chemistry, Qaemshahr Branch, Islamic Azad University, P.O.Box 163, Qaemshahr, Iran
› Author Affiliations
Further Information

Publication History

Received: 30 January 2015

Accepted after revision: 04 March 2015

Publication Date:
20 March 2015 (online)


Abstract

An effective route for the synthesis of phosphonate derivatives is described. This procedure involves the reaction of a trialkyl phosphites and dialkyl acetylenedicarboxylate in the presence of amines in water as the solvent at room temperature.

 
  • References and Notes

  • 1 Multicomponent Reactions. Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
  • 2 Ramon DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
  • 3 Zhu J. Eur. J. Org. Chem. 2003; 1133
  • 4 Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
  • 5 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 6 Koopmanschap G, Ruijter E, Orru RV. A. Beilstein J. Org. Chem. 2014; 10: 544
  • 7 Hulme C, Gore V. Curr. Med. Chem. 2003; 10: 51
  • 8 Grieco PA. Organic Synthesis in Water. Blackie Academic and Professional; Glasgow: 1998
  • 9 Anastas P, Williamson TC. Green Chemistry: Frontiers in Benign Chemical Synthesis and Processes. Oxford University Press; New York: 1998
  • 10 Breslow R. Acc. Chem. Res. 1991; 24: 159
  • 11 Li CJ, Chang TH. Organic Reactions in Aqueous Media. Wiley; New York: 1997: 7950
  • 12 Lindström UM. Chem. Rev. 2002; 102: 2751
  • 13 Shu K, Kei M. Acc. Chem. Res. 2002; 35: 209
  • 14 Li CJ. Chem. Rev. 2005; 105: 3095
  • 15 Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
    • 16a Pirrung MC. Chem. Eur. J. 2006; 12: 1312
    • 16b Polshettiwar V, Varma RS. Acc. Chem. Res. 2008; 41: 629
  • 17 Demko ZP, Sharpless KB. J. Org. Chem. 2001; 66: 7945
  • 18 Li CJ. Chem. Rev. 2005; 105: 3095
    • 19a Sikorski JA, Logusch EW In Handbook of Organophosphorus Chemistry . Engel R. Marcel Dekker; New York: 1992: 739
    • 19b Eto M, Engel R. Marcel Dekker; New York: 1992: 807
    • 19c Hinkle PC, McCarty RE. Sci. Am. 1978; 238: 104
    • 20a Eto M. Organophosphorus Pesticides. In Organic and Biological Chemistry. CRC Press; Ohio: 1974: 18
    • 20b Van Wazer JR In Phosphorus and its Compounds . Vol. 2. Interscience Publishers; New York: 1961
    • 20c Engel R. Chem. Rev. 1977; 77: 349
    • 20d Hildebrand R. The Role of Phosphonates in Living Systems . CRC Press; Boca Raton: 1983
  • 21 Papazoglou ES. Flame Retardants for Plastics. In Handbook of Building Materials for Fire Protection. Harper CA. McGraw-Hill; New York: 2004. 4.
  • 22 Weil ED. Phosphorus Flame Retardants. In Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 10. John Wiley; New York: 1993. 4th ed. 976
  • 23 Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
  • 24 Freeman GA, Rideout JL, Miller WH, Reardon JE. J. Med. Chem. 1992; 35: 3192
  • 25 Kaboudin B, Nazari R. Tetrahedron Lett. 2001; 42: 8211
  • 26 Kim DY, Rhie DY. Tetrahedron 1997; 53: 13603
  • 27 Burgada R, Leroux Y, El Khoshnieh YO. Tetrahedron Lett. 1981; 22: 3533
  • 28 Corbridge DE. C. Phosphorus. An Outline of Its Chemistry, Biochemistry and Uses. 5th ed. Elsevier; Amsterdam: 1995
  • 29 George M, Khetan VS. K, Gupta RK. Adv. Heterocycl. Chem. 1976; 19: 354
  • 30 Ruel R, Bouvier J, Young RN. J. Org. Chem. 1995; 60: 5209
  • 31 General Procedure for the Preparation of Compounds 5 A mixture of trialkyl phosphites 1 (2 mmol) and dialkyl acetylenedicarboxylate 2 (2 mmol) in H2O (5 mL) was stirred for 45 min and then added to a mixture of dimethyl acetylenedicarboxylate 4 (2 mmol) and primary amine 3 (2 mmol) in H2O that had been previously stirred for 30 min (5 mL). The reaction mixture was then stirred for a further 6 h at r.t. After completion of the reaction [6 h; TLC monitoring (EtOAc–hexane, 1:7)], the solid residue was filtered and washed with cold Et2O to give pure product 5. Representative Analytical Data for Compound 5a Yellow powder, yield 0.72 g (92%), mp 152–154 °C. IR (KBr): νmax = 3142, 1742, 1740, 1735, 1729, 1527, 1457, 1287cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.27 (3 H, s, NMe), 3.41 (3 H, d, 3 J HP = 11 Hz, MeO), 3.45 (3 H, d, 3 J HP = 11 Hz, MeO), 3.52 (3 H, s, MeO), 3.72 (3 H, s, MeO), 3.78 (3 H, s, MeO), 4.22 (1 H, d, 3 J HP = 8 Hz, CH), 12.35 (1 H, br s, NH) ppm.13C NMR (125.7 MHz, CDCl3): δ = 38.6 (NMe), 51.3 (d, 2 J CP = 9 Hz, CH), 51.8 (MeO), 52.2 (MeO), 53.2 (d, 2 J PC = 7 Hz, MeO), 53.7 (MeO), 54.2 (d, 2 J PC = 7 Hz, MeO), 62.8 (d 1 J PC = 135 Hz, C), 117.2 (d, 3 J PC = 21.6 Hz, C), 142.8 (d, 3 J PC = 21 Hz, C), 161.7 (C=O), 162.8 (d, 2 J PC = 6 Hz, C=O), 167.5 (d, 3 J PC = 21 Hz, C=O), 189.4 (d, 2 J PC = 9 Hz, C=O) ppm. 31P NMR (202 MHz, CDCl3): δ = 25.7. MS (EI): m/z (%) = 393 (15) [M+], 362 (82), 77 (56), 31 (100). Anal. Calcd for C14H20NO10P (393.28): C, 42.76; H, 5.13; N, 3.56. Found: C, 42.63; H, 5.02; N, 3.44.