Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(09): 1225-1229
DOI: 10.1055/s-0034-1380508
DOI: 10.1055/s-0034-1380508
letter
Stoichiometric Release of SO2 from Adducts: Application to the Direct Synthesis of Protected Dienes
Further Information
Publication History
Received: 03 February 2015
Accepted after revision: 03 March 2015
Publication Date:
01 April 2015 (online)
Abstract
The in situ, stoichiometric release of SO2 was studied from DABSO (DABCO adduct with SO2) and DMAP adduct. When involved in cheletropic additions, free SO2 released by this technique proved much more reactive than its adducts. Some examples of applications towards the direct synthesis of protected dienes from allylic alcohols are given.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380508.
- Supporting Information
-
References and Notes
- 1a Bisseret P, Blanchard N. Org. Biomol. Chem. 2013; 11: 5393
- 1b Deeming AS, Emmett EJ, Richards-Taylor CS, Willis MC. Synthesis 2014; 46: 2701
- 2a Woolven H, Gonzalez-Rodriguez C, Marco I, Thompson AL, Willis MC. Org. Lett. 2011; 13: 4876
- 2b Waldmann C, Schober O, Haufe G, Kopka K. Org. Lett. 2013; 15: 2954
- 2c Deeming AS, Russell CJ, Hennessy AJ, Willis MC. Org. Lett. 2014; 16: 150
- 2d Emmett EJ, Hayter BR, Willis MC. Angew. Chem. Int. Ed. 2013; 52: 12679
- 2e Rocke BN, Bahnck KB, Herr M, Lavergne S, Mascitti V, Perreault C, Polivkova J, Shavnya A. Org. Lett. 2014; 16: 154
- 3a Nguyen B, Emmett EJ, Willis MC. J. Am. Chem. Soc. 2010; 132: 16372
- 3b Emmett EJ, Richards-Taylor CS, Nguyen B, Garcia-Rubia A, Hayterb BR, Willis MC. Org. Biomol. Chem. 2012; 10: 4007
- 3c Richards-Taylor CS, Blakemore DC, Willis MC. Chem. Sci. 2014; 5: 222
- 3d Emmett EJ, Hayter BR, Willis MC. Angew. Chem. Int. Ed. 2014; 53: 10204
- 5a Zheng D, An Y, Li Z, Wu J. Angew. Chem. 2014; 126: 2483
- 5b Zheng D, An Y, Wu J. Chem. Commun. 2014; 50: 8886
- 5c An Y, Zheng D, Wu J. Chem. Commun. 2014; 50: 11746
- 6 Tao Y.-T, Liu C.-L, Lee S.-J. J. Org. Chem. 1986; 51: 4718
- 7 Brant MG, Wulff JE. Org. Lett. 2012; 14: 5876
- 8a Yamada S, Suzuki H, Naito H, Nomoto T, Takayama H. J. Chem. Soc., Chem. Commun. 1987; 332
- 8b Pasfield LA, de la Cruz L, Ho J, Coote ML, Otting G, McLeod MD. Asian J. Org. Chem. 2013; 2: 60
- 9a Backer HJ, Strating J. Recl. Trav. Chim. Pays-Bas 1934; 53: 525
- 9b Mock WL. J. Am. Chem. Soc. 1975; 97: 3666
- 9c Desimoni G, Faita G, Garau S, Righetti PP. Tetrahedron 1996; 52: 6241
- 9d Banert K, Ihle A, Kuhtz A, Penk E, Saha B, Würthwein E.-U. Tetrahedron 2013; 69: 2501
- 10a Deguin B, Vogel P. J. Am. Chem. Soc. 1992; 114: 9210
- 10b Fernandez T, Sordo JA, Monnat F, Deguin B, Vogel P. J. Am. Chem. Soc. 1998; 120: 13276
- 10c Marković D, Volla CM. R, Vogel P, Varela-Álvarez A, Sordo JA. Chem. Eur. J. 2010; 16: 5969
- 11 Li W, Li H, Langer P, Beller M, Wu X.-F. Eur. J. Org. Chem. 2014; 3101
- 12a Martial L, Bischoff L. Org. Synth. 2013; 90: 301
- 12b Huynh K, Rivard E, Lough AJ, Manners I. Chem. Eur. J. 2007; 13: 3431
- 13 A dry tube was charged with 4-(dimethylamino)-1-sulfano-pyridinium inner salt (DMAP·SO2, 1.68 g, 9.0 mmol) and sealed under nitrogen. Dry MeCN (8 mL) was added. After 5 min stirring at r.t., 2-(4-methoxyphenyl)but-3-en-2-ol (519 μL, 3.0 mmol) was added, and the reaction was stirred at r.t. during 15 min. To the resulting solution was added dropwise at 0 °C over a period of 5 min, freshly distilled MeSO2Cl (1.16 mL, 9.0 mmol). The ice bath was removed, and the temperature gradually rose to r.t. The sealed tube was heated to 70 °C for 12 h. After cooling, the solvent was removed in vacuo. The crude product was purified on silica gel, using PE–EtOAc (7:3) as an eluent to afford pure compound as a colorless powder (499 mg, 74%). Rf = 0.47 (PE–EtOAc, 1:1); mp 150–151 °C. IR: ν = 3393, 3088, 2980, 1591, 1470, 1432, 1365, 1293, 1188, 1129, 1074, 995, 923, 788, 750, 688, 629, 488 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.30 (d, 2 H, 3 JH–H = 8.8 Hz), 6.91 (d, 2 H, 3 JH–H = 8.8 Hz,), 6.21 (m, 1 H), 4.11 (m, 2 H), 4.01 (s, 2 H), 3.82 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 160.5, 135.8, 126.9, 126.7, 115.0, 114.4, 57.8, 56.79, 55.6. Anal Calcd for C11H12O3S: C, 58.91; H, 5.39. Found: C, 59.34; H, 5.52. HRMS (ESI+): m/z [M + H]+ calcd for C11H13O3S: 225.0585; found: 225.0578.