Synthesis 2015; 47(13): 1838-1843
DOI: 10.1055/s-0034-1380701
psp
© Georg Thieme Verlag Stuttgart · New York

Improved Synthesis of C2 and C6 Monoderivatives of α- and β-Cyclodextrin via the Click Chemistry Approach

Kazimierz Chmurski
a   Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
,
Pawel Stepniak
a   Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
b   Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: jurczak@icho.edu.pl
,
Janusz Jurczak*
b   Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: jurczak@icho.edu.pl
› Author Affiliations
Further Information

Publication History

Received: 03 February 2015

Accepted after revision: 13 April 2015

Publication Date:
08 May 2015 (online)


Abstract

An efficient multigram-scale azide-alkyne coupling of cyclodextrin derivatives mono-6-azido-6-deoxy-β-cyclodextrin, mono-2-O-propargyl-β-cyclodextrin, and mono-2-O-propargyl-α-cyclodextrin with terminal alkynyl aryl ethers or azides, mediated by copper(I) is reported. This process uses a stoichiometric ratio of substrates and 5 mol% of the copper catalyst to give the products with full conversion; thus, no chromatographic purification is necessary. The yields of both α- and β-cyclodextrin derivatives are in the range of 80 to 99%.

Supporting Information

 
  • References

  • 1 Zhou Y, Yoon J. Chem. Soc. Rev. 2012; 41: 52
    • 2a Menuel S, Azaroual N, Landy D, Six N, Hapiot F, Monflier E. Chem. Eur. J. 2011; 17: 3949
    • 2b Legros V, Vanhaverbeke C, Souard F, Len C, Désiré J. Eur. J. Org. Chem. 2013; 2583
  • 3 Yamanoi T, Kobayashia N, Takahashib K, Hattorib K. Lett. Drug Des. Discovery 2006; 3: 188
  • 4 Swiech O, Mieczkowska A, Chmurski K, Bilewicz R. J. Phys. Chem. B 2012; 116: 1765
  • 5 Faugeras P.-A, Boëns B, Elchinger P.-H, Brouillette F, Montplaisir D, Zerrouki R, Lucas R. Eur. J. Org. Chem. 2012; 4087
  • 6 Bittman R, Zhong N, Byun H.-S. Tetrahedron Lett. 1998; 39: 2919
  • 7 Prepared by converting the corresponding phenols into the alkyl phenyl ethers, by reaction with but-1-yn-3-ol or pent-1-yn-4-ol, under typical Mitsunobu conditions in the presence of DIAD in toluene, see: Mitsunobu O, Masaaki Y. Bull. Chem. Soc. Jpn. 1967; 40: 2380
  • 8 Li N, Chen Y, Zhang Y.-M, Wang L.-H, Mao W.-Z. Thermochim. Acta 2014; 576: 18
  • 9 Mourer M, Hapiot F, Tilloy S, Monflier E, Menuel S. Eur. J. Org. Chem. 2008; 5723
    • 10a Casas-Solvas J, Martos-Maldonado MC, Vargas-Berenguel A. Tetrahedron 2008; 64: 10919
    • 10b Cacciarini M, Nielsen MB, Martinez de Castro E, Marinescu L, Bols M. Tetrahedron Lett. 2012; 53: 973
  • 11 Cravotto G, Fokin VV, Garella D, Binello A, Boffa L, Barge A. J. Comb. Chem. 2010; 12: 13
  • 12 Munteanu M, Choi SW, Ritter H. Macromolecules 2008; 41: 9619
  • 13 Casas-Solvas J, Ortiz-Salmeron E, Fernandez I, Garcia-Fuentes L, Santoyo-Gonzales F, Vargas-Berenguel A. Chem. Eur. J. 2009; 15: 8146
  • 14 Bromopropoxybenzenes were synthesized by addition of 1,3-dibromopropane to a boiling solution of the corresponding phenol in NaOH solution. Terminal azide moieties were introduced into aryl components via substitution of terminal bromopropoxyarenes with sodium azide under typical conditions.