Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(14): 2032-2037
DOI: 10.1055/s-0034-1380813
DOI: 10.1055/s-0034-1380813
psp
Synthesis of an Intermediate of Nafoxidine via Nickel-Catalyzed Ketone Arylation
Further Information
Publication History
Received: 24 March 2015
Accepted after revision: 24 April 2015
Publication Date:
09 June 2015 (online)
Abstract
A nickel-catalyzed methodology for the α-arylation of ketones has been applied to the synthesis of an industrially relevant intermediate. The optimization of the reaction shows the important influence of subtle changes in reaction conditions, and leads to an improved procedure employing only a small excess of the substrate and a relatively low catalyst loading.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380813.
- Supporting Information
-
References
- 1a Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 1b Metal Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley; New York: 2014
- 2a Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
-
2b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
- 2c de Vries JG. Top. Organomet. Chem. 2012; 42: 1
- 2d Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective. Crawley ML, Trost BM. Wiley; New York: 2012
- 3 Hu X. Chem. Sci. 2011; 2: 1867
- 4 Gosmini C, Begouin J.-M, Moncomble A. Chem. Commun. 2008; 3221
- 5a Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13
- 5b Evano G, Theunissen C, Pradal A. Nat. Prod. Rep. 2013; 30: 1467
- 6a Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
- 6b Czaplik WM, Mayer M, Cvengroš J, von Wangelin AJ. ChemSusChem 2009; 2: 396
- 7a Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
- 7b Corriu RJ. P, Masse JP. Chem. Commun. 1972; 7062
- 7c Keim W. Angew. Chem. Int. Ed. 1990; 29: 235
- 7d Tasker SZ, Standley EA, Jamison TF. Nature (London) 2014; 509: 299
- 7e Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
- 7f Mesganaw T, Garg NK. Org. Process Res. Dev. 2012; 17: 29
- 8a Gooßen LJ, Gooßen K, Stanciu C. Angew. Chem. Int. Ed. 2009; 48: 3569
- 8b Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 9a Ge S, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 12837
- 9b Martin AR, Nelson DJ, Meiries S, Slawin AM. Z, Nolan SP. Eur. J. Org. Chem. 2014; 3127
- 10a Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
-
10b Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
- 10c Ankner T, Cosner CC, Helquist P. Chem. Eur. J. 2013; 19: 1858
- 10d Hamann BC, Hartwig JF. J. Am. Chem. Soc. 1997; 119: 12382
- 10e Palucki M, Buchwald SL. J. Am. Chem. Soc. 1997; 119: 11108
- 10f Bellina F, Rossi R. Chem. Rev. 2009; 110: 1082
- 11a Venkatesan H, Davis MC, Altas Y, Snyder JP, Liotta DC. J. Org. Chem. 2001; 66: 3653
- 11b Tartaggia S, Caporale A, Fontana F, Stabile P, Castellin A, De Lucchi O. RSC Adv. 2013; 3: 18544
- 11c Gatland AE, Pilgrim BS, Procopiou PA, Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 14555
-
12a Marion N, Ecarnot EC, Navarro O, Amoroso D, Bell A, Nolan SP. J. Org. Chem. 2006; 71: 3816
- 12b Grasa GA, Colacot TJ. Org. Lett. 2007; 9: 5489
- 12c Biscoe MR, Buchwald SL. Org. Lett. 2009; 11: 1773
- 12d Hesp KD, Lundgren RJ, Stradiotto M. J. Am. Chem. Soc. 2011; 133: 5194
- 12e Crawford SM, Alsabeh PG, Stradiotto M. Eur. J. Org. Chem. 2012; 6042
-
13 For example, see the mechanistic study reported in: Henrion M, Chetcuti MJ, Ritleng V. Chem. Commun. 2014; 50: 4624
- 14a Chen G, Kwong FY, Chan HO, Yu W.-Y, Chan AS. C. Chem. Commun. 2006; 1413
-
14b Matsubara K, Ueno K, Koga Y, Hara K. J. Org. Chem. 2007; 72: 5069
- 14c Spielvogel DJ, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 3500
- 14d Takise R, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2014; 53: 6791
- 14e Cornella J, Jackson EP, Martin R. Angew. Chem. Int. Ed. 2015; 54: 4075
- 15a Danoun G, Tlili A, Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2012; 51: 12815
- 15b Shi Y, Zhu X, Mao H, Hu H, Zhu C, Cheng Y. Chem. Eur. J. 2013; 19: 11553
-
16 Hahn FE, Jahnke MC. Angew. Chem. Int. Ed. 2008; 47: 3122
- 17 Fernández-Salas JA, Marelli E, Cordes DB, Slawin AM. Z, Nolan SP. Chem. Eur. J. 2015; 21: 3906
-
18 Dible BR, Sigman MS. J. Am. Chem. Soc. 2003; 125: 872
-
19a Iglesias MJ, Prieto A, Nicasio MC. Adv. Synth. Catal. 2010; 352: 1949
- 19b Iglesias MJ, Prieto A, Nicasio MC. Org. Lett. 2012; 14: 4318
-
19c Makida Y, Marelli E, Slawin AM. Z, Nolan SP. Chem. Commun. 2014; 50: 8010
- 20a Vaccaro W, Amore C, Berger J, Burrier R, Clader J, Davis H, Domalski M, Fevig T, Salisbury B, Sher R. J. Med. Chem. 1996; 39: 1704
- 20b Colacot TJ, Gazic Smilovic I, Seechurn C. EP 2524908, 2012
- 21a Altenhoff G, Goddard R, Lehmann CW, Glorius F. J. Am. Chem. Soc. 2004; 126: 15195
- 21b Organ MG, Çalimsiz S, Sayah M, Hoi KH, Lough AJ. Angew. Chem. Int. Ed. 2009; 48: 2383
- 21c Chartoire A, Lesieur M, Falivene L, Slawin AM. Z, Cavallo L, Cazin CS. J, Nolan SP. Chem. Eur. J. 2012; 18: 4517
-
21d Chartoire A, Frogneux X, Nolan SP. Adv. Synth. Catal. 2012; 354: 1897
-
21e Martin AR, Makida Y, Meiries S, Slawin AM. Z, Nolan SP. Organometallics 2013; 32: 6265
- 22a Grasa GA, Colacot TJ. Org. Process Res. Dev. 2008; 12: 522
- 22b Marelli E, Corpet M, Davies SR, Nolan SP. Chem. Eur. J. 2014; 20: 17272
- 23 Gómez-Suárez A, Ramón RS, Songis O, Slawin AM. Z, Cazin CS. J, Nolan SP. Organometallics 2011; 30: 5463
- 24 Meiries S, Speck K, Cordes DB, Slawin AM. Z, Nolan SP. Organometallics 2012; 32: 330
The first examples of selective cross coupling was the Ni-catalyzed Kumada–Tamao–Corriu reaction of aryl Grignard reagents:
For a review on industrial applications of Ni catalysis, see:
For recent reviews on Ni catalysis, see:
Recent examples using copper: