Planta Med 2014; 80(13): 1053-1066
DOI: 10.1055/s-0034-1383026
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Naturally Occurring Homoisoflavonoids and Their Pharmacological Activities

Li-Gen Lin
1   State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, P. R. China
,
Qian-Yu Liu
1   State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, P. R. China
,
Yang Ye
2   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
› Author Affiliations
Further Information

Publication History

received 14 March 2014
revised 31 July 2014

accepted 04 August 2014

Publication Date:
25 August 2014 (online)

Abstract

Homoisoflavonoids, a special subclass of flavonoids, are rarely found in nature, mainly existing in Fabaceae and Asparagaceae families and being less common in Polygonaceae, Portulacaceae, Orchidaceae, and Gentianaceae families. Until now, approximately 240 natural occurring homoisoflavonoids have been identified from roots, barks, heartwood, bulbs, leaves, and seeds of the plants from the above mentioned families, which have often been used in traditional medicine. Homoisoflavonoids have been reported with a broad range of bioactivities, including anti-microbial, anti-mutagenic, anti-oxidant, immunomodulatory, anti-diabetic, cytotoxic, anti-angiogenic, vasorelaxant, and anti-inflammatory effects. To organize this review, the homoisoflavonoids were classified into five groups based on their structures: sappanin-type (I), scillascillin-type (II), brazilin-type (III), caesalpin-type (IV), and protosappanin-type (V). The structures of natural occurring homoisoflavonoids are described, and their proposed biosynthetic pathway and recent pharmacological studies are discussed. The main purpose of this review is to provide a comprehensive and up-to-date state of knowledge from phytochemical and pharmacological studies performed on homoisoflavonoids during the past decades. Homoisoflavonoids might have a large potential for further investigations of their bioactivities in order to identify important leads.

 
  • References

  • 1 Abegaz BM, Mutanyatta-Comar J, Nindi M. Naturally occurring homoisoflavonoids: Phytochemistry, biological activities and synthesis. Nat Prod Commun 2007; 2: 475-498
  • 2 Ata A, Gale EM, Samarasekera R. Bioactive chemical constituents of Caesalpinia bonduc (Fabaceae). Phytochem Lett 2009; 2: 106-109
  • 3 Calvo MI. Three new homoisoflavanones from the bulbs of Ledebouria floribunda . Fitoterapia 2009; 80: 394-398
  • 4 Chen P, Yang JS. Flavonol galactoside caffeiate ester and homoisoflavones from Caesalpinia millettii HOOK. et ARN. Chem Pharm Bull 2007; 55: 655-657
  • 5 Chen PY, Kuo YC, Chen CH, Kuo YH, Lee CK. Isolation and immunomodulatory effect of homoisoflavones and flavones from Agave sisalana Perrine ex Engelm. Molecules 2009; 14: 1789-1795
  • 6 Cuong TD, Hung TM, Kim JC, Kim EH, Woo MH, Choi JS, Lee JH, Min BS. Phenolic compounds from Caesalpinia sappan heartwood and their anti-inflammatory activity. J Nat Prod 2012; 75: 2069-2075
  • 7 Dai YM, Harinantenaina L, Brodie PJ, Goetz M, Shen YC, TenDyke K, Kingston DGI. Antiproliferative homoisoflavonoids and bufatrienolides from Urginea depressa . J Nat Prod 2013; 76: 865-872
  • 8 Das B, Thirupathi P, Ravikanth B, Kumar RA, Sarma AVS, Basha SJ. Isolation, synthesis, and bioactivity of homoisoflavonoids from Caesalpinia pulcherrima . Chem Pharm Bull 2009; 57: 1139-1141
  • 9 Duan CL, Kang ZY, Lin CR, Jiang Y, Liu JX, Tu PF. Two new homoisoflavonoids from the fibrous roots of Ophiopogon japonicus (Thunb.) Ker-Gawl. J Asian Nat Prod Res 2009; 11: 876-879
  • 10 Famuyiwa SO, Sichilongo KF, Yeboah SO, Abegaz BM. Homoisoflavonoids from the inter-bulb surfaces of Scilla nervosa subsp rigidifolia . Phytochem Lett 2012; 5: 591-595
  • 11 Guo H, Zhao H, Kanno Y, Li W, Mu Y, Kuang X, Inouye Y, Koike K, Jiang H, Bai H. A dihydrochalcone and several homoisoflavonoids from Polygonatum odoratum are activators of adenosine monophosphate-activated protein kinase. Bioorg Med Chem Lett 2013; 23: 3137-3139
  • 12 Guo J, Li L, Wu YJ, Yan Y, Xu XN, Wang SB, Yuan TY, Fang LH, Du GH. Inhibitory effects of brazilin on the vascular smooth muscle cell proliferation and migration induced by PDGF-BB. Am J Chin Med 2013; 41: 1283-1296
  • 13 Gupta D, Bleakley B, Gupta RK. Bioassay guided isolation of antibacterial homoisoflavan from Dragonis blood resin (Dammul-akhwain). Nat Prod Rad 2009; 8: 494-497
  • 14 Hung TM, Cao VT, Nguyen TD, Ryoo SW, Lee JH, Kim JC, Na M, Jung HJ, Bae K, Min BS. Homoisoflavonoid derivatives from the roots of Ophiopogon japonicus and their in vitro anti-inflammation activity. Bioorg Med Chem Lett 2010; 20: 2412-2416
  • 15 Jeong HJ, Kim YM, Kim JH, Kim JY, Park JY, Park SJ, Ryu YB, Lee WS. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol Pharm Bull 2012; 35: 786-790
  • 16 Koorbanally C, Sewjee S, Mulholland DA, Crouch NR, Dold A. Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae (Hyacinthaceae : Hyacinthoideae). Phytochemistry 2007; 68: 2753-2756
  • 17 Li N, Zhang JY, Zeng KW, Zhang L, Che YY, Tu PF. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus . Fitoterapia 2012; 83: 1042-1045
  • 18 Liang CH, Chan LP, Chou TH, Chiang FY, Yen CM, Chen PJ, Ding HY, Lin RJ. Brazilein from Caesalpinia sappan L. antioxidant inhibits adipocyte differentiation and induces apoptosis through caspase-3 activity and anthelmintic activities against Hymenolepis nana and Anisakis simplex . Evid Based Complement Alternat Med 2013; 2013: 864892
  • 19 Likhitwitayawuid K, Sawasdee K, Kirtikara K. Flavonoids and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri . Planta Med 2002; 68: 841-843
  • 20 Lin LG, Xie H, Li HL, Tong LJ, Tang CP, Ke CQ, Liu QF, Lin LP, Geng MY, Jiang H, Zhao WM, Ding J, Ye Y. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening. J Med Chem 2008; 51: 4419-4429
  • 21 Lin LG, Xie H, Wang YT, Ding J, Ye Y. Chemical constituents from the heartwood of Haematoxylon campechianum as protein tyrosine kinase inhibitors. Chem Biodivers 2014; 11: 776-783
  • 22 Liu J, Mei WL, Wu J, Zhao YX, Peng M, Dai HF. A new cytotoxic homoisoflavonoid from Dracaena cambodiana . J Asian Nat Prod Res 2009; 11: 192-195
  • 23 Midiwo JO, Omoto FM, Yenesew A, Akala HM, Wangui J, Liyala P, Wasunna C, Waters NC. The first 9-hydroxyhomoisoflavanone, and antiplasmodial chalcones, from the aerial exudates of Polygonum senegalense . Arkivoc 2007; 9: 21-27
  • 24 Min BS, Cuong TD, Hung TM, Min BK, Shin BS, Woo MH. Compounds from the heartwood of Caesalpinia sappan and their anti-inflammatory activity. Bioorg Med Chem Lett 2012; 22: 7436-7439
  • 25 Nishida Y, Eto M, Miyashita H, Ikeda T, Yamaguchi K, Yoshimitsu H, Nohara T, Ono M. A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides . Chem Pharm Bull 2008; 56: 1022-1025
  • 26 Rafi MM, Vastano BC. Identification of a structure specific Bcl-2 phosphorylating homoisoflavone molecule from Vietnamese coriander (Polygonatum odoratum) that induces apoptosis and G2/M cell cycle arrest in breast cancer cell lines. Food Chem 2007; 104: 332-340
  • 27 Roy SK, Agrahari UC, Gautam R, Srivastava A, Jachak SM. Isointricatinol, a new antioxidant homoisoflavonoid from the roots of Caesalpinia digyna Rottler. Nat Prod Res 2012; 26: 690-695
  • 28 Roy SK, Kumari N, Gupta S, Pahwa S, Nandanwar H, Jachak SM. 7-Hydroxy-(E)-3-phenylmethylene-chroman-4-one analogues as efflux pump inhibitors against Mycobacterium smegmatis mc(2) 155. Eur J Med Chem 2013; 66: 499-507
  • 29 Tsai YC, Chiang SY, El-Shazly M, Wu CC, Beerhues L, Lai WC, Wu SF, Yen MH, Wu YC, Chang FR. The oestrogenic and anti-platelet activities of dihydrobenzofuroisocoumarins and homoisoflavonoids from Liriope platyphylla roots. Food Chem 2013; 140: 305-314
  • 30 Waller CP, Thumser AE, Langat MK, Crouch NR, Mulholland DA. COX-2 inhibitory activity of homoisoflavanones and xanthones from the bulbs of the Southern African Ledebouria socialis and Ledebouria ovatifolia (Hyacinthaceae: Hyacinthoideae). Phytochemistry 2013; 95: 284-290
  • 31 Wang Z, Sun JB, Qu W, Guan FQ, Li LZ, Liang JY. Caesappin A and B, two novel protosappanins from Caesalpinia sappan L. Fitoterapia 2014; 92: 280-284
  • 32 Yan J, Sun LR, Zhou ZY, Chen YC, Zhang WM, Dai HF, Tan JW. Homoisoflavonoids from the medicinal plant Portulaca oleracea . Phytochemistry 2012; 80: 37-41
  • 33 Zhang H, Yang F, Qi J, Song XC, Hu ZF, Zhu DN, Yu BY. Homoisoflavonoids from the fibrous roots of Polygonatum odoratum with glucose uptake-stimulatory activity in 3 T3-L1 adipocytes. J Nat Prod 2010; 73: 548-552
  • 34 Zhao MB, Li J, Shi SP, Cai CQ, Tu PF, Tang L, Zeng KW, Jiang Y. Two new phenolic compounds from the heartwood of Caesalpinia sappan L. Molecules 2013; 19: 1-8
  • 35 Zhao H, Wang X, Li W, Koike K, Bai H. A new minor homoisoflavonoid from Caesalpinia sappan . Nat Prod Res 2014; 28: 102-105
  • 36 Zhou CX, Zou L, Mo JX, Wang XY, Yang B, He QJ, Gan LS. Homoisoflavonoids from Ophiopogon japonicus . Helv Chim Acta 2013; 96: 1397-1405
  • 37 Anh NTH, Van Sung T, Porzel A, Franke K, Wessjohann LA. Homoisoflavonoids from Ophiopogon japonicus Ker-Gawler. Phytochemistry 2003; 62: 1153-1158
  • 38 Asano T, Murayama T, Hirai Y, Shoji J. Comparative studies on the constituents of Ophiopogonis tuber and its congeners. VII. Studies on the homoisoflavonoids of the subterranean part of Ophiopogon japonicus Ker-Gawler cv. Nanus. Chem Pharm Bull 1993; 41: 391-393
  • 39 Chang JM, Shen CC, Huang YL, Chien MY, Ou JC, Shieh BJ, Chen CC. Five new homoisoflavonoids from the tuber of Ophiopogon japonicus . J Nat Prod 2002; 65: 1731-1733
  • 40 Kaneda N, Nakanishi H, Kuraishi T, Katori T. Studies on the components of Ophiopogon roots (China). Yakugaku Zasshi 1983; 103: 1133-1139
  • 41 Tada A, Kasai R, Saitoh T, Shoji J. Studies on the constituents of Ophiopogonis tuber: structures of homoisoflavonoids. Chem Pharm Bull 1980; 28: 2039-2044
  • 42 Watanabe Y, Sanada S, Ida Y, Shoji J. Comparative studies on the constituents of Ophiopogonis tuber and its congeners. IV. Studies on the homoisoflavonoids of the Subterranean part of Ophiopogon ohwii Okuyama and Ophiopogon jaburan (Kunth) Lodd. Chem Pharm Bull 1985; 33: 5358-5363
  • 43 Nagai M, Nagumo S. Protosappanin-C from sappan lignum and absolute configuration of protosappanins. Chem Pharm Bull 1987; 35: 3002-3005
  • 44 Nagai M, Nagumo S. Protosappanin-E-1 and protosappanin-E-2, stereoisomeric dibenzoxocins combined with brazilin from sappan lignum. Chem Pharm Bull 1990; 38: 1490-1494
  • 45 Namikoshi M, Nakata H, Nuno M, Ozawa T, Saitoh T. Homoisoflavonoids and related-compounds. III. Phenolic constituents of Caesalpinia japonica Sieb et Zucc. Chem Pharm Bull 1987; 35: 3568-3575
  • 46 Namikoshi M, Nakata H, Saitoh T. Homoisoflavonoids and related-compounds. V. A novel dibenzoxocin derivative from Caesalpinia sappan L. Chem Pharm Bull 1987; 35: 3615-3619
  • 47 Namikoshi M, Nakata H, Saitoh T. Homoisoflavonoids and related compounds. I. Homoisoflavonoids from Caesalpinia sappan . Phytochemistry 1987; 26: 1831-1833
  • 48 Namikoshi M, Nakata H, Yamada H, Nagai M, Saitoh T. Homoisoflavonoids and related compounds. II. Isolation and absolute configurations of 3, 4-dihydroxylated homoisoflavans and brazilins from Caesalpinia sappan L. Chem Pharm Bull 1987; 35: 2761-2773
  • 49 Namikoshi M, Saitoh T. Homoisoflavonoids and related compounds. IV. Absolute configurations of homoisoflavonoids from Caesalpinia sappan L. Chem Pharm Bull 1987; 35: 3597-3602
  • 50 Saitoh T, Sakashita S, Nakata H, Shimokawa T, Kinjo J, Yamahara J, Yamasaki M, Nohara T. 3-Benzylchroman derivatives related to brazilin from sappan lignum. Chem Pharm Bull 1986; 34: 2506-2511
  • 51 Shimokawa T, Kinjo J, Yamahara J, Yamasaki M, Nohara T. 2 novel aromatic compounds from Caesalpinia sappan . Chem Pharm Bull 1985; 33: 3545-3547
  • 52 Yang BO, Ke CQ, He ZS, Yang YP, Ye Y. Brazilide A, a novel lactone with an unprecedented skeleton from Caesalpinia sappan . Tetrahedron Lett 2002; 43: 1731-1733
  • 53 OʼDonnell G, Bucar F, Gibbons S. Phytochemistry and antimycobacterial activity of Chlorophytum inornatum . Phytochemistry 2006; 67: 178-182
  • 54 Jain SC, Sharma SK, Kumar R, Rajwanshi VK, Babu BR. A homoisoflavanone from Pterocarpus marsupium . Phytochemistry 1997; 44: 765-766
  • 55 Silayo A, Ngadjui BT, Abegaz BM. Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa subsp rigidifolia . Phytochemistry 1999; 52: 947-955
  • 56 Koorbanally C, Mulholland DA, Crouch NR. A novel homoisoflavonoid from Drimia delagoensis (Urgineoideae: Hyacinthaceae). Biochem Syst Ecol 2005; 33: 743-748
  • 57 Adinolfi M, Barone G, Belardini M, Lanzetta R, Laonigro G, Parrilli M. Homoisoflavanones from Muscari comosum bulbs. Phytochemistry 1985; 24: 2423-2426
  • 58 Corsaro MM, Lanzetta R, Mancino A, Parrilli M. Homoisoflavanones from Chionodoxa luciliae . Phytochemistry 1992; 31: 1395-1397
  • 59 Mutanyatta J, Matapa BG, Shushu DD, Abegaz BM. Homoisoflavonoids and xanthones from the tubers of wild and in vitro regenerated Ledebouria graminifolia and cytotoxic activities of some of the homoisoflavonoids. Phytochemistry 2003; 62: 797-804
  • 60 Heller W, Andermatt P, Schaad WA, Tamm C. [Homoisoflavonones. IV. New constituents of the eucomin series of Eucomis bicolor (authorʼs transl)]. Helv Chim Acta 1976; 59: 2048-2058
  • 61 Bangani V, Crouch NR, Mulholland DA. Homoisoflavanones and stilbenoids from Scilla nervosa . Phytochemistry 1999; 51: 947-951
  • 62 Adinolfi M, Corsaro MM, Lanzetta R, Laonigro G, Mangoni L, Parrilli M. 10 homoisoflavanones from 2 Muscari species. Phytochemistry 1987; 26: 285-290
  • 63 Delazar A, Nazemiyeh H, Afshar J. Identification of a new homoisoflavonone from Bellevalia longistyla . Ulumi Deroei 2002; 1: 33-38
  • 64 Adinolfi M, Aquila T, Barone G, Lanzetta R, Parrilli M. Homoisoflavanones from Bellevalia romana . Phytochemistry 1989; 28: 3244-3246
  • 65 Rafi MM, Vastano BC, Ho CT, Rosen RT. Novel compound isolated from Polygonum odoratum induces Bcl-2 phosphorylation and apoptosis in cancer cell tines. Faseb J 2002; 16: A743-A743
  • 66 Crouch NR, Bangani V, Mulholland DA. Homoisoflavanones from three South African Scilla species. Phytochemistry 1999; 51: 943-946
  • 67 Amschler G, Frahm AW, Hatzelmann A, Kilian U, MullerDoblies D, MullerDoblies U. Constituents of Veltheimia viridifolia. I. Homoisoflavanones of the bulbs. Planta Med 1996; 62: 534-539
  • 68 Koorbanally NA, Crouch NR, Harilal A, Pillay B, Mulholland DA. Coincident isolation of a novel homoisoflavonoid from Resnova humifusa and Eucomis montana . Biochem Syst Ecol 2006; 34: 114-118
  • 69 Tang YP, Yu B, Hu J, Wu T, Hui HZ. Three new homoisoflavanone glycosides from the bulbs of Ornithogalum caudatum . J Nat Prod 2002; 65: 218-220
  • 70 du Toit K, Elgorashi EE, Malan SF, Drewes SE, van Staden J, Crouch NR, Mulholland DA. Anti-inflammatory activity and QSAR studies of compounds isolated from Hyacinthaceae species and Tachiadenus longiflorus Griseb. (Gentianaceae). Bioorg Med Chem 2005; 13: 2561-2568
  • 71 Hernandez JC, Leon F, Estevez F, Quintana J, Bermejo J. A homo-isoflavonoid and a cytotoxic saponin from Dracaena draco . Chem Biodivers 2006; 3: 62-68
  • 72 Kumar R, Ilyas M, Parveen M. Shafiullah. A new chromone from Cassia nodosa . J Asian Nat Prod Res 2006; 8: 595-598
  • 73 Srinivas KV, Koteswara Rao Y, Mahender I, Das B, Rama Krishna KV, Hara Kishore K, Murty US. Flavanoids from Caesalpinia pulcherrima . Phytochemistry 2003; 63: 789-793
  • 74 Purushothaman KK, Kalyani K, Subramaniam K, Shanmughanathan SP. Structure of Bonducellin – a new homoisoflavone from Caesalpinia bonducella . Indian J Chem B 1982; 21: 383
  • 75 Wall ME, Wani MC, Manikumar G, Taylor H, Mcgivney R. Plant antimutagens. 6. Intricatin and intricatinol, new antimutagenic homoisoflavonoids from Hoffmanosseggia intricata . J Nat Prod 1989; 52: 774-778
  • 76 Mcpherson DD, Cordell GA, Soejarto DD, Pezzuto JM, Fong HHS. Peltogynoids and homoisoflavonoids from Caesalpinia pulcherrima . Phytochemistry 1983; 22: 2835-2838
  • 77 Finckh RE, Tamm C. The homo-isoflavones. 3. Isolation and structure of punctatin, 3, 9-dihydro-punctatin, 4′-o-methyl-3, 9-dihydro-punctatin, 4′-demethyl-eucomin and 4′-demethyl-5-o-methyl-3, 9-dihydro-eucomin. Experientia 1970; 26: 472-473
  • 78 Masterova I, Suchy V, Uhrin D, Ubik K, Grancaiova Z, Bobovnicky B. Homoisoflavanones and other constituents from Muscari racemosum . Phytochemistry 1991; 30: 713-714
  • 79 Barone G, Corsaro MM, Lanzetta R, Parrilli M. Homoisoflavanones from Muscari neglectum . Phytochemistry 1988; 27: 921-923
  • 80 Kouno I, Komori T, Kawasaki T. Zur Struktur der neuen Typen Homo-Isoflavanone aus Bulben von Scilla scilloides Druce. Tetrahedron Lett 1973; 14: 4569-4572
  • 81 Masuda H, Ohtani K, Mizutani K, Ogawa S, Kasai R, Tanaka O. Chemical study on Haematoxylon campechianum – a sweet principle and new dibenz[b,d]oxocin derivatives. Chem Pharm Bull 1991; 39: 1382-1384
  • 82 Meksuriyen D, Cordell GA, Ruangrungsi N, Tantivatana P. Traditional medicinal plants of Thailand, IX. 10-Hydroxy-11-methoxydracaenone and 7, 10-dihydroxy-11-methoxydracaenone from Dracaena loureiri . J Nat Prod 1987; 50: 1118-1125
  • 83 Nguyen MT, Awale S, Tezuka Y, Tran QL, Kadota S. Neosppanone A, a xanthine oxidase (XO) inhibitory dimeric methanodibenzoxocinone with a new carbon skeleton from Caesalpinia sappan . Tetrahedron Lett 2004; 45: 8519-8522
  • 84 Reddy VL, Ravikanth V, Jansi Lakshmi VV, Suryanarayan Murty U, Venkateswarlu Y. Inhibitory activity of homoisoflavonoids from Caesalpinia sappan against Beauveria bassiana . Fitoterapia 2003; 74: 600-602
  • 85 Benigni R, Bossa C. Alternative strategies for carcinogenicity assessment: an efficient and simplified approach based on in vitro mutagenicity and cell transformation assays. Mutagenesis 2011; 26: 455-460
  • 86 Miadokova E, Masterova I, Vlckova V, Duhova V, Toth J. Antimutagenic potential of homoisoflavonoids from Muscari racemosum . J Ethnopharmacol 2002; 81: 381-386
  • 87 Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003; 15: 247-254
  • 88 Machala M, Kubinova R, Horavova P, Suchy V. Chemoprotective potentials of homoisoflavonoids and chalcones of Dracaena cinnabari: modulations of drug-metabolizing enzymes and antioxidant activity. Phytother Res 2001; 15: 114-118
  • 89 Choi SY, Yang KM, Jeon SD, Kim JH, Khil LY, Chang TS, Moon CK. Brazilin modulates immune function mainly by augmenting T cell activity in halothane administered mice. Planta Med 1997; 63: 405-408
  • 90 Yang KM, Jeon SD, So DS, Moon CK. Brazilin augments cellular immunity in multiple low dose streptozotocin (MLD-STZ) induced type I diabetic mice. Arch Pharm Res 2000; 23: 626-632
  • 91 Moon CK, Lee SH, Lee MO, Kim SG. Effects of brazilin on glucose-oxidation, lipogenesis and therein involved enzymes in adipose tissues from diabetic KK-Mice. Life Sci 1993; 53: 1291-1297
  • 92 Khil LY, Han SS, Kim SG, Chang TS, Jeon SD, So DS, Moon CK. Effects of Brazilin on GLUT4 recruitment in isolated rat epididymal adipocytes. Biochem Pharmacol 1999; 58: 1705-1712
  • 93 You EJ, Khil LY, Kwak WJ, Won HS, Chae SH, Lee BH, Moon CK. Effects of brazilin on the production of fructose-2, 6-bisphosphate in rat hepatocytes. J Ethnopharmacol 2005; 102: 53-57
  • 94 Nguyen AT, Fontaine J, Malonne H, Duez P. Homoisoflavanones from Disporopsis aspera . Phytochemistry 2006; 67: 2159-2163
  • 95 Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett 2012; 320: 130-137
  • 96 Shim JS, Kim JH, Lee JY, Kim SN, Kwon HJ. Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata . Planta Med 2004; 70: 171-173
  • 97 Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98-107
  • 98 Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004; 109: 2-10
  • 99 Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010; 129: 154-169
  • 100 Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets 2005; 4: 471-479
  • 101 Baselga J. Targeting tyrosine kinases in cancer: the second wave. Science 2006; 312: 1175-1178
  • 102 Hu CM, Kang JJ, Lee CC, Li CH, Liao JW, Cheng YW. Induction of vasorelaxation through activation of nitric oxide synthase in endothelial cells by brazilin. Eur J Pharmacol 2003; 468: 37-45
  • 103 Urbancikova M, Masterova I, Toth J. Estrogenic/antiestrogenic activity of homoisoflavonoids from bulbs of Muscari racemosum (L.) Miller. Fitoterapia 2002; 73: 724-726