Semin Neurol 2014; 34(03): 239-248
DOI: 10.1055/s-0034-1386762
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Congenital Brain Abnormalities: An Update on Malformations of Cortical Development and Infratentorial Malformations

Andrea Poretti
1   Section of Pediatric Neuroradiology, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
2   Division of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
,
Eugen Boltshauser
2   Division of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
,
Thierry A.G.M. Huisman
1   Section of Pediatric Neuroradiology, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
05. September 2014 (online)

Abstract

In the past two decades, significant progress in neuroimaging and genetic techniques has allowed for advances in the correct definition/classification of congenital brain abnormalities, which have resulted in a better understanding of their pathogenesis. In addition, new groups of diseases, such as axonal guidance disorders or tubulinopathies, are increasingly reported. Well-defined neuroimaging diagnostic criteria have been suggested for the majority of congenital brain abnormalities. Accurate diagnoses of these complex abnormalities, including distinction between malformations and disruptions, are of paramount significance for management, prognosis, and family counseling. In the next decade, these advances will hopefully be translated into deeper understanding of these disorders and more specific treatments.

 
  • References

  • 1 Sarnat HB, Flores-Sarnat L. Etiological classification of CNS malformations: integration of molecular genetic and morphological criteria. Epileptic Disord 2003; 5 (Suppl. 02) S35-S43
  • 2 Sarnat HB, Flores-Sarnat L. Integrative classification of morphology and molecular genetics in central nervous system malformations. Am J Med Genet A 2004; 126A (4) 386-392
  • 3 Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain 2009; 132 (Pt 12) 3199-3230
  • 4 Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135 (Pt 5) 1348-1369
  • 5 Dobyns WB. The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 2010; 51 (Suppl. 01) 5-9
  • 6 Poretti A, Meoded A, Rossi A, Raybaud C, Huisman TA. Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 2013; 43 (1) 28-54
  • 7 Bosemani T, Poretti A, Huisman TA. Susceptibility-weighted imaging in pediatric neuroimaging. J Magn Reson Imaging 2013; DOI: ; 10.1002/jmri.24410.
  • 8 Hennekam RC, Biesecker LG, Allanson JE , et al; Elements of Morphology Consortium. Elements of morphology: general terms for congenital anomalies. Am J Med Genet A 2013; 161A (11) 2726-2733
  • 9 Dale ST, Coleman LT. Neonatal alloimmune thrombocytopenia: antenatal and postnatal imaging findings in the pediatric brain. AJNR Am J Neuroradiol 2002; 23 (9) 1457-1465
  • 10 Ghevaert C, Campbell K, Walton J , et al. Management and outcome of 200 cases of fetomaternal alloimmune thrombocytopenia. Transfusion 2007; 47 (5) 901-910
  • 11 Zankl A, Brooks D, Boltshauser E, Largo R, Schinzel A. Natural history of twin disruption sequence. Am J Med Genet A 2004; 127A (2) 133-138
  • 12 Cecchetto G, Milanese L, Giordano R, Viero A, Suma V, Manara R. Looking at the missing brain: hydranencephaly case series and literature review. Pediatr Neurol 2013; 48 (2) 152-158
  • 13 Moore CA, Weaver DD, Bull MJ. Fetal brain disruption sequence. J Pediatr 1990; 116 (3) 383-386
  • 14 Poretti A, Prayer D, Boltshauser E. Morphological spectrum of prenatal cerebellar disruptions. Eur J Paediatr Neurol 2009; 13 (5) 397-407
  • 15 Boltshauser E, Schneider J, Kollias S, Waibel P, Weissert M. Vanishing cerebellum in myelomeningocoele. Eur J Paediatr Neurol 2002; 6 (2) 109-113
  • 16 Poretti A, Leventer RJ, Cowan FM , et al. Cerebellar cleft: a form of prenatal cerebellar disruption. Neuropediatrics 2008; 39 (2) 106-112
  • 17 Poretti A, Huisman TA, Cowan FM , et al. Cerebellar cleft: confirmation of the neuroimaging pattern. Neuropediatrics 2009; 40 (5) 228-233
  • 18 Poretti A, Limperopoulos C, Roulet-Perez E , et al. Outcome of severe unilateral cerebellar hypoplasia. Dev Med Child Neurol 2010; 52 (8) 718-724
  • 19 Gould DB, Phalan FC, Breedveld GJ , et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005; 308 (5725) 1167-1171
  • 20 Vermeulen RJ, Peeters-Scholte C, Van Vugt JJ , et al. Fetal origin of brain damage in 2 infants with a COL4A1 mutation: fetal and neonatal MRI. Neuropediatrics 2011; 42 (1) 1-3
  • 21 Yoneda Y, Haginoya K, Kato M , et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann Neurol 2013; 73 (1) 48-57
  • 22 Paciorkowski AR, Keppler-Noreuil K, Robinson L , et al. Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption. Am J Med Genet A 2013; 161A (7) 1523-1530
  • 23 Doherty D, Millen KJ, Barkovich AJ. Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol 2013; 12 (4) 381-393
  • 24 Messerschmidt A, Brugger PC, Boltshauser E , et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol 2005; 26 (7) 1659-1667
  • 25 Namavar Y, Barth PG, Poll-The BT, Baas F. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis 2011; 6: 50
  • 26 Hayashi N, Tsutsumi Y, Barkovich AJ. Morphological features and associated anomalies of schizencephaly in the clinical population: detailed analysis of MR images. Neuroradiology 2002; 44 (5) 418-427
  • 27 Raybaud C, Widjaja E. Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimaging Clin N Am 2011; 21 (3) 483-543, vii vii
  • 28 Nabavizadeh SA, Zarnow D, Bilaniuk LT, Schwartz ES, Zimmerman RA, Vossough A. Correlation of prenatal and postnatal MRI findings in schizencephaly. AJNR Am J Neuroradiol 2014; 35 (7) 1418-1424
  • 29 Denis D, Maugey-Laulom B, Carles D, Pedespan JM, Brun M, Chateil JF. Prenatal diagnosis of schizencephaly by fetal magnetic resonance imaging. Fetal Diagn Ther 2001; 16 (6) 354-359
  • 30 Gedikbasi A, Yildirim G, Saygi S, Arslan O, Gul A, Ceylan Y. Prenatal diagnosis of schizencephaly with 2D-3D sonography and MRI. J Clin Ultrasound 2009; 37 (8) 467-470
  • 31 Raybaud C, Girard N, Lévrier O, Peretti-Viton P, Manera L, Farnarier P. Schizencephaly: correlation between the lobar topography of the cleft(s) and absence of the septum pellucidum. Childs Nerv Syst 2001; 17 (4-5) 217-222
  • 32 Granata T, Farina L, Faiella A , et al. Familial schizencephaly associated with EMX2 mutation. Neurology 1997; 48 (5) 1403-1406
  • 33 Tietjen I, Bodell A, Apse K , et al. Comprehensive EMX2 genotyping of a large schizencephaly case series. Am J Med Genet A 2007; 143A (12) 1313-1316
  • 34 Merello E, Swanson E, De Marco P , et al. No major role for the EMX2 gene in schizencephaly. Am J Med Genet A 2008; 146A (9) 1142-1150
  • 35 Curry CJ, Lammer EJ, Nelson V, Shaw GM. Schizencephaly: heterogeneous etiologies in a population of 4 million California births. Am J Med Genet A 2005; 137 (2) 181-189
  • 36 Feng Y, Walsh CA. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat Rev Neurosci 2001; 2 (6) 408-416
  • 37 Guzik BW, Goldstein LS. Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr Opin Cell Biol 2004; 16 (4) 443-450
  • 38 Ayala R, Shu T, Tsai LH. Trekking across the brain: the journey of neuronal migration. Cell 2007; 128 (1) 29-43
  • 39 Marín O, Valiente M, Ge X, Tsai LH. Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2010; 2 (2) a001834
  • 40 Abdollahi MR, Morrison E, Sirey T , et al. Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia. Am J Hum Genet 2009; 85 (5) 737-744
  • 41 Poirier K, Saillour Y, Bahi-Buisson N , et al. Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 2010; 19 (22) 4462-4473
  • 42 Cushion TD, Dobyns WB, Mullins JG , et al. Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain 2013; 136 (Pt 2) 536-548
  • 43 Breuss M, Heng JI, Poirier K , et al. Mutations in the β-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities. Cell Reports 2012; 2 (6) 1554-1562
  • 44 Vulliemoz S, Raineteau O, Jabaudon D. Reaching beyond the midline: why are human brains cross wired?. Lancet Neurol 2005; 4 (2) 87-99
  • 45 Shinbrot T, Young W. Why decussate? Topological constraints on 3D wiring. Anat Rec (Hoboken) 2008; 291 (10) 1278-1292
  • 46 Chilton JK. Molecular mechanisms of axon guidance. Dev Biol 2006; 292 (1) 13-24
  • 47 Bashaw GJ, Klein R. Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2010; 2 (5) a001941
  • 48 Engle EC. Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2010; 2 (3) a001784
  • 49 Nugent AA, Kolpak AL, Engle EC. Human disorders of axon guidance. Curr Opin Neurobiol 2012; 22 (5) 837-843
  • 50 Bonnet C, Roubertie A, Doummar D, Bahi-Buisson N, Cochen de Cock V, Roze E. Developmental and benign movement disorders in childhood. Mov Disord 2010; 25 (10) 1317-1334
  • 51 Srour M, Rivière JB, Pham JM , et al. Mutations in DCC cause congenital mirror movements. Science 2010; 328 (5978) 592
  • 52 Depienne C, Bouteiller D, Méneret A , et al. RAD51 haploinsufficiency causes congenital mirror movements in humans. Am J Hum Genet 2012; 90 (2) 301-307
  • 53 Méneret A, Depienne C, Riant F , et al. Congenital mirror movements: mutational analysis of RAD51 and DCC in 26 cases. Neurology 2014; 82 (22) 1999-2002
  • 54 Gallea C, Popa T, Hubsch C , et al. RAD51 deficiency disrupts the corticospinal lateralization of motor control. Brain 2013; 136 (Pt 11) 3333-3346
  • 55 Haller S, Wetzel SG, Lütschg J. Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis. Neuroradiology 2008; 50 (5) 453-459
  • 56 Jen JC, Chan WM, Bosley TM , et al. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 2004; 304 (5676) 1509-1513
  • 57 Irahara K, Saito Y, Sugai K , et al. Pontine malformation, undecussated pyramidal tracts, and regional polymicrogyria: a new syndrome. Pediatr Neurol 2014; 50 (4) 384-388
  • 58 Kweldam CF, Gwynn H, Vashist A, Hoon Jr AH, Huisman TA, Poretti A. Undecussated superior cerebellar peduncles and absence of the dorsal transverse pontine fibers: a new axonal guidance disorder?. Cerebellum 2014; 13 (4) 536-540
  • 59 Poretti A, Boltshauser E, Loenneker T , et al. Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol 2007; 28 (10) 1929-1933
  • 60 Jissendi-Tchofo P, Doherty D, McGillivray G , et al. Pontine tegmental cap dysplasia: MR imaging and diffusion tensor imaging features of impaired axonal navigation. AJNR Am J Neuroradiol 2009; 30 (1) 113-119
  • 61 Doherty D. Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 2009; 16 (3) 143-154
  • 62 Romani M, Micalizzi A, Valente EM. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol 2013; 12 (9) 894-905
  • 63 Poretti A, Dietrich Alber F, Brancati F, Dallapiccola B, Valente EM, Boltshauser E. Normal cognitive functions in Joubert syndrome. Neuropediatrics 2009; 40 (6) 287-290
  • 64 Poretti A, Christen HJ, Elton LE , et al. Horizontal head titubation in infants with Joubert syndrome: a new finding. Dev Med Child Neurol 2014;
  • 65 Poretti A, Vitiello G, Hennekam RC , et al. Delineation and diagnostic criteria of oral-facial-digital syndrome type VI. Orphanet J Rare Dis 2012; 7: 4
  • 66 Poretti A, Huisman TA, Scheer I, Boltshauser E. Joubert syndrome and related disorders: spectrum of neuroimaging findings in 75 patients. AJNR Am J Neuroradiol 2011; 32 (8) 1459-1463
  • 67 Lopez E, Thauvin-Robinet C, Reversade B , et al. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet 2014; 133 (3) 367-377
  • 68 Friede RL, Boltshauser E. Uncommon syndromes of cerebellar vermis aplasia. I: Joubert syndrome. Dev Med Child Neurol 1978; 20 (6) 758-763
  • 69 Théoret H, Gleeson J, Pascual-Leone A. Neurophysiologic characterization of motor and sensory projections in Joubert syndrome. Clin Neurophysiol 2013; 124 (11) 2283-2284
  • 70 Halbritter J, Bizet AA, Schmidts M , et al; UK10K Consortium. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 2013; 93 (5) 915-925
  • 71 Thomas S, Wright KJ, Le Corre S , et al. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum Mutat 2014; 35 (1) 137-146
  • 72 Tuz K, Bachmann-Gagescu R, O'Day DR , et al. Mutations in CSPP1 cause primary cilia abnormalities and Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 2014; 94 (1) 62-72
  • 73 Romani M, Micalizzi A, Kraoua I , et al. Mutations in B9D1 and MKS1 cause mild Joubert syndrome: expanding the genetic overlap with the lethal ciliopathy Meckel syndrome. Orphanet J Rare Dis 2014; 9: 72
  • 74 Doherty D, Parisi MA, Finn LS , et al. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 2010; 47 (1) 8-21
  • 75 Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011; 364 (16) 1533-1543
  • 76 Lancaster MA, Gopal DJ, Kim J , et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med 2011; 17 (6) 726-731
  • 77 Aguilar A, Meunier A, Strehl L , et al. Analysis of human samples reveals impaired SHH-dependent cerebellar development in Joubert syndrome/Meckel syndrome. Proc Natl Acad Sci U S A 2012; 109 (42) 16951-16956
  • 78 Guemez-Gamboa A, Coufal NG, Gleeson JG. Primary cilia in the developing and mature brain. Neuron 2014; 82 (3) 511-521
  • 79 Barth PG, Majoie CB, Caan MW , et al. Pontine tegmental cap dysplasia: a novel brain malformation with a defect in axonal guidance. Brain 2007; 130 (Pt 9) 2258-2266
  • 80 Rauscher C, Poretti A, Neuhann TM , et al. Pontine tegmental cap dysplasia: the severe end of the clinical spectrum. Neuropediatrics 2009; 40 (1) 43-46
  • 81 Desai NK, Young L, Miranda MA, Kutz Jr JW, Roland PS, Booth TN. Pontine tegmental cap dysplasia: the neurotologic perspective. Otolaryngol Head Neck Surg 2011; 145 (6) 992-998
  • 82 Caan MW, Barth PG, Niermeijer JM, Majoie CB, Poll-The BT. Ectopic peripontine arcuate fibres, a novel finding in pontine tegmental cap dysplasia. Eur J Paediatr Neurol 2014; 18 (3) 434-438