Subscribe to RSS
DOI: 10.1055/s-0034-1386766
Genetic Cerebellar Ataxias
Publication History
Publication Date:
05 September 2014 (online)
Abstract
This review broadly covers the commoner genetic ataxias, concentrating on their clinical features. Over the last two decades there has been a potentially bewildering profusion of newly described genetic ataxias. However, at least half of dominant ataxias (SCAs) are caused by (CAG)n repeat expansions resulting in expanded polyglutamine tracts (SCAs 1, 2, 3, 6, 7, 17, and DRPLA), although of the remainder only SCAs 8, 10, 12, 14, 15/16, and 31 are frequent enough that the described phenotype is probably representative. Though the SCAs can be difficult to separate clinically, variations in prevalence in different populations, together with various clinical and radiological features, at least help to order the pretest probabilities. The X-linked disorder, fragile-X tremor ataxia syndrome occurs in fragile-X permutation carriers, and typically causes a late-onset ataxia-plus syndrome. The recessive ataxias are not named systematically: The most frequent are Friedreich, ataxia telangiectasia, ARSACS, AOA1 and 2, and the various POLG syndromes. Although rare, several other recessive disorders such as AVED are potentially treatable and should not be missed. Another group of genetic ataxias are the dominant episodic ataxias, of which EA1 and EA2 are the most important. Lastly, the neurologist's role in ongoing management, rather than just diagnosis, is addressed.
-
References
- 1 Gardner RJM. “SCA16” is really SCA15. J Med Genet 2008; 45 (3) 192
- 2 Manto MU. Dominant ataxias. In: Manto MU, , ed. Cerebellar Disorders: A Practical Approach to Diagnosis and Management. Cambridge, UK: Cambridge University Press; 2010: 242-283
- 3 Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the 'the Drew family of Walworth'. Brain 1982; 105 (Pt 1) 1-28
- 4 Konigsmark BW, Weiner LP. The olivopontocerebellar atrophies: a review. Medicine (Baltimore) 1970; 49 (3) 227-241
- 5 Orr HT. Cell biology of spinocerebellar ataxia. J Cell Biol 2012; 197 (2) 167-177
- 6 Matilla A, Roberson ED, Banfi S , et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J Neurosci 1998; 18 (14) 5508-5516
- 7 Kang S, Jaworski A, Ohshima K, Wells RD. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet 1995; 10 (2) 213-218
- 8 Ikeda Y, Daughters RS, Ranum LP. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 2008; 7 (2) 150-158
- 9 Juvonen V, Kairisto V, Hietala M, Savontaus M-L. Calculating predictive values for the large repeat alleles at the SCA8 locus in patients with ataxia. J Med Genet 2002; 39 (12) 935-936
- 10 Anderson KG. How well does paternity confidence match actual paternity? Evidence from worldwide nonpaternity rates. Curr Anthropol 2006; 47: 513-520
- 11 Orr HT, Chung MY, Banfi S , et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993; 4 (3) 221-226
- 12 Rüb U, Schöls L, Paulson H , et al. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 2013; 104: 38-66
- 13 Donato SD, Mariotti C, Taroni F. Spinocerebellar ataxia type 1. Handb Clin Neurol 2012; 103: 399-421
- 14 Imbert G, Saudou F, Yvert G , et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14 (3) 285-291
- 15 Sanpei K, Takano H, Igarashi S , et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996; 14 (3) 277-284
- 16 Pulst SM, Nechiporuk A, Nechiporuk T , et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996; 14 (3) 269-276
- 17 Auburger GWJ. Spinocerebellar ataxia type 2. Handb Clin Neurol 2012; 103: 423-436
- 18 Elden AC, Kim HJ, Hart MP , et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010; 466 (7310) 1069-1075
- 19 Kawaguchi Y, Okamoto T, Taniwaki M , et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994; 8 (3) 221-228
- 20 Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum 2008; 7 (2) 125-137
- 21 Paulson H. Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 2012; 103: 437-449
- 22 Pedroso JL, França Jr MC, Braga-Neto P , et al. Nonmotor and extracerebellar features in Machado-Joseph disease: a review. Mov Disord 2013; 28 (9) 1200-1208
- 23 Zhuchenko O, Bailey J, Bonnen P , et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997; 15 (1) 62-69
- 24 Solodkin A, Gomez CM. Spinocerebellar ataxia type 6. Handb Clin Neurol 2012; 103: 461-473
- 25 Mantuano E, Veneziano L, Jodice C, Frontali M. Spinocerebellar ataxia type 6 and episodic ataxia type 2: differences and similarities between two allelic disorders. Cytogenet Genome Res 2003; 100 (1-4) 147-153
- 26 Gomez CM, Thompson RM, Gammack JT , et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 1997; 42 (6) 933-950
- 27 David G, Abbas N, Stevanin G , et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17 (1) 65-70
- 28 Martin J-J. Spinocerebellar ataxia type 7. Handb Clin Neurol 2012; 103: 475-491
- 29 Koob MD, Moseley ML, Schut LJ , et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999; 21 (4) 379-384
- 30 Ikeda Y, Ranum LP, Day JW. Clinical and genetic features of spinocerebellar ataxia type 8. Handb Clin Neurol 2012; 103: 493-505
- 31 Gupta A, Jankovic J. Spinocerebellar ataxia 8: variable phenotype and unique pathogenesis. Parkinsonism Relat Disord 2009; 15 (9) 621-626
- 32 Matsuura T, Yamagata T, Burgess DL , et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26 (2) 191-194
- 33 Teive HA, Munhoz RP, Arruda WO, Raskin S, Werneck LC, Ashizawa T. Spinocerebellar ataxia type 10 - a review. Parkinsonism Relat Disord 2011; 17 (9) 655-661
- 34 Holmes SE, O'Hearn EE, McInnis MG , et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 1999; 23 (4) 391-392
- 35 O'Hearn E, Holmes SE, Margolis RL . Spinocerebellar ataxia type 12. Handbook of Neurology 2012. ;103:535–547
- 36 Chen D-H, Brkanac Z, Verlinde CLMJ , et al. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 2003; 72 (4) 839-849
- 37 Chen DH, Cimino PJ, Ranum LP , et al. The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology 2005; 64 (7) 1258-1260
- 38 Chen D-H, Raskind WH, Bird TD. Spinocerebellar ataxia type 14. Handbook of Clinical Neurology 2012; 103: 555-559
- 39 van de Leemput J, Chandran J, Knight MA , et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 2007; 3 (6) e108
- 40 Synofzik M, Beetz C, Bauer C , et al. Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 2011; 48 (6) 407-412
- 41 Storey E . Spinocerebellar ataxia type 15. In: Pagon RA, Adam MP, Ardinger HH et al, eds. Gene Reviews. Seattle, WA: University of Washington; 2013. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK1362/ . Accessed May 20, 2014
- 42 Huang L, Chardon JW, Carter MT , et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 2012; 7: 67
- 43 Koide R, Kobayashi S, Shimohata T , et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease?. Hum Mol Genet 1999; 8 (11) 2047-2053
- 44 Cloud LJ, Wilmot G. Other spinocerebellar ataxias. Handb Clin Neurol 2012; 103: 581-586
- 45 Webb TE, Poulter M, Beck J , et al. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. Brain 2008; 131 (Pt 10) 2632-2646
- 46 Sato N, Amino T, Kobayashi K , et al. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 2009; 85 (5) 544-557
- 47 Ouyang Y, Sakoe K, Shimazaki H , et al. 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci 2006; 247 (2) 180-186
- 48 Edener U, Bernard V, Hellenbroich Y, Gillessen-Kaesbach G, Zühlke C. Two dominantly inherited ataxias linked to chromosome 16q22.1: SCA4 and SCA31 are not allelic. J Neurol 2011; 258 (7) 1223-1227
- 49 Koide R, Ikeuchi T, Onodera O , et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994; 6 (1) 9-13
- 50 Nagafuchi S, Yanagisawa H, Sato K , et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 1994; 6 (1) 14-18
- 51 Tsuji S. Dentatorubral-pallidoluysian atrophy. Handb Clin Neurol 2012; 103: 587-594
- 52 Kremer EJ, Pritchard M, Lynch M , et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991; 252 (5013) 1711-1714
- 53 Hagerman RJ, Leehey M, Heinrichs W , et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001; 57 (1) 127-130
- 54 Storey E, Billimoria P. Increased T2 signal in the middle cerebellar peduncles on MRI is not specific for fragile X premutation syndrome. J Clin Neurosci 2005; 12 (1) 42-43
- 55 Jacquemont S, Hagerman RJ, Hagerman PJ, Leehey MA. Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1. Lancet Neurol 2007; 6 (1) 45-55
- 56 Hagerman RJ, Leavitt BR, Farzin F , et al. Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Am J Hum Genet 2004; 74 (5) 1051-1056
- 57 Szmulewicz DJ, Waterston JA, MacDougall HG , et al. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS): a review of the clinical features and video-oculographic diagnosis. Ann N Y Acad Sci 2011; 1233: 139-147
- 58 Campuzano V, Montermini L, Moltò MD , et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271 (5254) 1423-1427
- 59 Campuzano V, Montermini L, Lutz Y , et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 1997; 6 (11) 1771-1780
- 60 Delatycki MB, Paris DBBP, Gardner RJM , et al. Clinical and genetic study of Friedreich ataxia in an Australian population. Am J Med Genet 1999; 87 (2) 168-174
- 61 Labuda M, Labuda D, Miranda C , et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 2000; 54 (12) 2322-2324
- 62 Harding AE. Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981; 104 (3) 589-620
- 63 Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet 2000; 37 (1) 1-8
- 64 Pandolfo M. Friedreich ataxia. Handb Clin Neurol 2012; 103: 275-294
- 65 Hanna MG, Davis MB, Sweeney MG , et al. Generalized chorea in two patients harboring the Friedreich's ataxia gene trinucleotide repeat expansion. Mov Disord 1998; 13 (2) 339-340
- 66 Coppola G, De Michele G, Cavalcanti F , et al. Why do some Friedreich's ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J Neurol 1999; 246 (5) 353-357
- 67 Subramony SH, May W, Lynch D , et al; Cooperative Ataxia Group. Measuring Friedreich ataxia: Interrater reliability of a neurologic rating scale. Neurology 2005; 64 (7) 1261-1262
- 68 Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 2010; 67 (8) 941-947
- 69 Savitsky K, Bar-Shira A, Gilad S , et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268 (5218) 1749-1753
- 70 Swift M. Genetics and epidemiology of ataxia-telangiectasia. Kroc Found Ser 1985; 19: 133-146
- 71 Perlman SL, Boder Deceased E, Sedgewick RP, Gatti RA. Ataxia-telangiectasia. Handb Clin Neurol 2012; 103: 307-332
- 72 Laderoute MP. Improved safety and effectiveness of imaging predicted for MR mammography. (Letter) Br J Cancer 2004; 90 (1) 278-279 , author reply 280
- 73 Bouchard JP, Barbeau A, Bouchard R, Bouchard RW. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Can J Neurol Sci 1978; 5 (1) 61-69
- 74 Vermeer S, Meijer RPP, Pijl BJ , et al. ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 2008; 9 (3) 207-214
- 75 Engert JC, Bérubé P, Mercier J , et al. ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 2000; 24 (2) 120-125
- 76 Le Ber I, Moreira MC, Rivaud-Péchoux S , et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain 2003; 126 (Pt 12) 2761-2772
- 77 Date H, Onodera O, Tanaka H , et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2001; 29 (2) 184-188
- 78 Moreira MC, Barbot C, Tachi N , et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 2001; 29 (2) 189-193
- 79 Quinzii CM, Kattah AG, Naini A , et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 2005; 64 (3) 539-541
- 80 Anheim M, Fleury M, Monga B , et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 2010; 11 (1) 1-12
- 81 Anheim M, Monga B, Fleury M , et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain 2009; 132 (Pt 10) 2688-2698
- 82 Moreira M-C, Klur S, Watanabe M , et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 2004; 36 (3) 225-227
- 83 Chen Y-Z, Bennett CL, Huynh HM , et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004; 74 (6) 1128-1135
- 84 Cohen BH, Chinnery PF, Copeland WE. POLG-related disorders. In: Pagon RA, Adam MP, Ardinger HH, et al, eds. Gene Reviews. Seattle, WA: University of Washington; 2012. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK26471/ . Accessed May 20, 2014
- 85 Ben Hamida M, Belal S, Sirugo G , et al. Friedreich's ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology 1993; 43 (11) 2179-2183
- 86 Ouahchi K, Arita M, Kayden H , et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 1995; 9 (2) 141-145
- 87 Federico A, Dotti MT, Gallus GN . Cerebrotendinous xanthomatosis. In: Pagon RA, Adam MP, Ardinger HH, et al, eds. Gene Reviews. Seattle, WA: University of Washington; 2013. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK1409/ . Accessed May 21, 2014
- 88 Cali JJ, Hsieh C-L, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 1991; 266 (12) 7779-7783
- 89 Patterson M. Niemann-Pick disease Type C. In: Pagon RA, Adam MP, Ardinger HH, et al, eds. Gene Reviews. Seattle, WA: University of Washington; 2013. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK1296/ . Accessed May 21, 2014
- 90 Browne DL, Gancher ST, Nutt JG , et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 1994; 8 (2) 136-140
- 91 D'Adamo MC, Hanna MG, Di Giovanni G , et al. Episodic ataxia type 1. In: Pagon RA, Adam MP, Ardinger HH et al, eds. Gene Reviews. Seattle, WA: University of Washington; 2013. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK25442/ . Accessed May 19, 2014
- 92 Baloh RW. Episodic ataxias 1 and 2. Handb Clin Neurol 2012; 103: 595-602
- 93 Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW ; CINCH investigators. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007; 130 (Pt 10) 2484-2493
- 94 Hand PJ, Gardner RJM, Knight MA, Forrest SM, Storey E. Clinical features of a large Australian pedigree with episodic ataxia type 1. Mov Disord 2001; 16 (5) 938-939
- 95 Ophoff RA, Terwindt GM, Vergouwe MN , et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87 (3) 543-552
- 96 Jodice C, Mantuano E, Veneziano L , et al. Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 1997; 6 (11) 1973-1978
- 97 Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M. Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 2010; 25 (13) 2239-2246