Rofo 2015; 187(07): 569-576
DOI: 10.1055/s-0034-1399313
Interventional Radiology
© Georg Thieme Verlag KG Stuttgart · New York

C-Arm Cone-Beam CT Combined with a New Electromagnetic Navigation System for Guidance of Percutaneous Needle Biopsies: Initial Clinical Experience

C-Bogen Flachdetektor-CT in Kombination mit einem neuartigen elektromagnetischen Navigationssystem bei der Steuerung perkutaner Biopsien: Erste klinische Erfahrungen
R. Kickuth
,
C. Reichling
,
T. Bley
,
D. Hahn
,
C. Ritter
Further Information

Publication History

15 July 2014

13 February 2015

Publication Date:
19 June 2015 (online)

Abstract

Purpose: To evaluate the feasibility and efficacy of C-arm fluoroscopic cone-beam computed tomography (CACT) in combination with a new electromagnetic tracking (EMT) system for needle guidance during percutaneous biopsies.

Materials and Methods: 53 patients were referred for biopsy of thoracic (n = 19) and abdominal (n = 34) lesions. CT-like images of the anatomical region of interest (ROI) were generated using a flat panel-based angiographic system. These images were transmitted to an EMT system. A coaxial puncture needle with a sensor in its tip was connected with the navigation system and tracked into an electromagnetic field created via a field generator. Data generated within this field were merged with the CACT images. On a monitor both the anatomical ROI and needle tip position were displayed to enable precise needle insertion into the target. Through the coaxial needle, biopsy specimens for the histologic evaluation were extracted. Number of representative biopsy samples, number of core biopsies/patient, total procedure time, dose-area product, fluoroscopic time, and complications were recorded.

Results: 53 CACT/EMT-guided biopsy procedures were performed, 48 of which (91 %) yielded representative tissue samples. Four core biopsies were obtained from each patient. 40 (75 %) lesions were malignant and 13 (25 %) lesions were benign. The total procedure time was 9 ± 5 min (range, 3 – 23 min), fluoroscopic time was 0.8 ± 0.4 min (range, 0.4 – 2 min). The mean dose-area product (cGy cm²) was 7373 (range, 895 – 26 904). The rate of complications (1 pneumothorax, 2 hemoptyses) was 6 %.

Conclusion: CACT combined with EMT appears to be a feasible and effective technique for the guidance of percutaneous biopsies with a low rate of therapeutically relevant complications.

Key Points:

• Guidance of percutaneous biopsies with a combination of CACT and EMT is technically feasible.

• CACT/EMT-guided biopsies are associated with a good diagnostic yield.

• The rate of complications appears to be low for this guidance technique.

Citation Format:

• Kickuth R., Reichling C., Bley T. et al. C-Arm Cone-Beam CT Combined with a New Electromagnetic Navigation System for Guidance of Percutaneous Needle Biopsies: Initial Clinical Experience. Fortschr Röntgenstr 2015; 187: 569 – 576

Zusammenfassung

Ziel: Evaluation der Durchführbarkeit und Effizienz der Kombination aus C-Arm Flachdetektor-CT (FD-CT) und elektromagnetischer Navigation (EMN) bei der Steuerung perkutaner Nadelbiopsien.

Material und Methoden: Insgesamt wurden 53 Patienten wegen thorakaler (n = 19) und abdomineller (n = 34) Läsionen zugewiesen. Mithilfe einer mit FD-CT ausgerüsteten Angiografieanlage wurden dreidimensionale CT-artige Schnittbilder der anatomischen Region-of-Interest generiert. Diese Bilder wurden auf ein EMN-System transferiert. Eine koaxiale, mit einem Sensor versehene Punktionsnadel wurde mit dem EMN-System verbunden und in ein elektromagnetisches Wechselfeld, welches zuvor durch einen Feldgenerator erzeugt wurde, eingebracht. Die innerhalb dieses Feldes erzeugten Daten wurden mit den FD-CT-Bildern fusioniert. Auf einem Monitor wurden dann die anatomische Region-of-Interest und die Nadelposition angezeigt, sodass eine präzise Nadelinsertion in Richtung Zielläsion möglich war. Durch die Koaxialnadel wurden Zylinder für die histologische Untersuchung gewonnen. Erfasst wurden die Anzahl an repräsentativen Gewebeproben, die Anzahl an Stanzbiopsaten/Patient, die Gesamtprozedurzeit, das Dosisflächenprodukt, die Fluoroskopiezeit und die Komplikationen.

Ergebnisse: 53 FD-CT-/EMN-gesteuerte Biopsien wurden durchgeführt, von denen 48 (91 %) repräsentative Gewebeproben ergaben. Vier Stanzbiopsate wurden von jedem Patienten gewonnen. 40 (75 %) Läsionen waren maligne und 13 (25 %) Läsionen benigne. Die Gesamtprozedurzeit betrug 9 min ± 5 min (Spannweite, 3 – 23 min), die Gesamtfluoroskopiezeit lag bei 0,8 min ± 0,4 min (Spannweite, 0,4 – 2 min). Das Flächendosisprodukt (cGy cm²) betrug im Mittel 7373 (Spannweite, 895 – 26 904). Die Gesamtrate an Komplikationen (1 Pneumothorax, 2 Hämoptysen) lag bei 6 %.

Schlussfolgerung: Die Kombination aus FD-CT und EMN ist eine durchführbare und effektive Technik für die Steuerung perkutaner Biopsien mit einer niedrigen Rate an therapeutisch relevanten Komplikationen.

Kernaussagen:

• Die Steuerung perkutaner Biopsien mit einer Kombination aus FD-CT und EMN ist technisch durchführbar.

• FD-CT-/EMN-gesteuerte Biopsien sind mit einer guten diagnostischen Ausbeute verbunden.

• Die Rate an Komplikationen für diese Steuerungstechnik scheint niedrig zu sein.

 
  • References

  • 1 Haaga JR, Alfidi RJ. Precise biopsy localization by computed tomography. Radiology 1976; 118: 603-607
  • 2 Welch TJ, Sheedy PF, Johnson CD et al. CT-guided biopsy: prospective analysis of 1000 procedures. Radiology 1989; 171: 493-496
  • 3 Gazelle GS, Haaga JR. Guided percutaneous biopsy of intraabdominal lesions. Am J Roentgenol Am J Roentgenol 1989; 153: 929-935
  • 4 Silverman SG, Bloom DA, Seltzer SE et al. Needle-tip localization during CT-guided abdominal biopsy: comparison of conventional and spiral CT. Am J Roentgenol Am J Roentgenol 1992; 159: 1095-1097
  • 5 Haramati LB. CT-guided automated needle biopsy of the chest. Am J Roentgenol Am J Roentgenol 1995; 165: 53-55
  • 6 Yankelevitz DF, Henschke CI, Davis SD. Angulated needle placement in CT-guided percutaneous needle biopsy of the thorax. Clin Imaging 1993; 17: 124-125
  • 7 Sheafor DH, Paulson EK, Simmons CM et al. Abdominal percutaneous interventional procedures: comparison of CT and US guidance. Radiology 1998; 207: 705-710
  • 8 Dupuy DE, Rosenberg AE, Punyaratabandhu T et al. Accuracy of CT-guided needle biopsy of musculoskeletal neoplasms. Am J Roentgenol Am J Roentgenol 1998; 171: 759-762
  • 9 de Mey J, Op de Beeck B, Freson M et al. Computed tomography-guided diagnostic puncture in abdominal pathology. J Radiol 1999; 80: 11-16
  • 10 Ghaye B, Dondelinger RF, Dewe W. Percutaneous CT-guided lung biopsy: sequential versus spiral scanning. A randomized prospective study. Eur Radiol 1999; 9: 1317-1320
  • 11 Wutke R, Schmid A, Fellner F et al. CT-guided percutaneous core biopsy: effective accuracy, diagnostic utility and effective costs. Fortschr Röntgenstr 2001; 173: 1025-1033
  • 12 Lopez HE, Vogl TJ, Ricke J et al. CT-guided percutaneous core biopsies of pulmonary lesions. Diagnostic accuracy, complications and therapeutic impact. Acta Radiol 2001; 42: 151-155
  • 13 Kirchner J, Kickuth R, Laufer U et al. CT-fluoroscopy-assisted puncture of thoracic and abdominal masses: a randomized trial. Clin Radiol 2002; 57: 188-192
  • 14 Muehlstaedt M, Bruening R, Diebold J et al. CT/fluoroscopy-guided thransthoracic needle biopsy: sensitivity and complication rate in 98 procedures. J Comput Assist Tomogr 2002; 26: 191-196
  • 15 Wallace MJ, Kuo MD, Glaiberman C et al. Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol 2009; 20: S523-S537
  • 16 Braak SJ, van Strijen MJL, van Leersum M et al. Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. Am J Roentgenol Am J Roentgenol 2010; 194: W445-W451
  • 17 Meyer BC, Wolf KJ, Wacker FK. Flat-detector CT-based electromagnetic navigation. Radiologe 2009; 49: 856-861
  • 18 Vogl TJ, Balzer JO, Mack MG et al. Interventional MDCT. Eur Radiol 2003; 13: M139-M145
  • 19 Tselikas L, Joskin J, Roquet F et al. Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol 2015; 36: 167-176
  • 20 Meyer BC, Peter O, Nagel M et al. Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol 2008; 18: 2855-2864
  • 21 Gupta S, Wallace MJ, Cardella JF et al. Quality improvement guidelines for percutaneous needle biopsy. J Vasc Interv Radiol 2010; 21: 969-975
  • 22 Wallace MJ, Gupta S, Hicks ME. Out-of-plane computed-tomography-guided biopsy using a magnetic-field-based navigation system. Cardiovasc Intervent Radiol 2006; 29: 108-113
  • 23 Appelbaum L, Sosna J, Nissenbaum Y et al. Electromagnetic navigation system for CT-guided biopsy of small lesions. Am J Roentgenol Am J Roentgenol 2011; 196: 1194-1200
  • 24 Braak SJ, Herder GJ, van Heesewijk JP et al. Pulmonary masses: initial results of cone-beam CT guidance with needle planning software for percutaneous lung biopsy. Cardiovasc Intervent Radiol 2012; 35: 1414-1421
  • 25 Braak SJ, van Melick HH, Onaca MG et al. 3D cone-beam CT guidance, a novel technique in renal biopsy – results in 41 patients with suspected renal masses. Eur Radiol 2012; 22: 2547-2552
  • 26 Hwang HS, Chung MJ, Lee JW et al. C-arm cone-beam CT-guided percutaneous transthoracic lung biopsy: usefulness in evaluation of small pulmonary nodules. Am J Roentgenol Am J Roentgenol 2010; 195: W400-W407
  • 27 Clifford MA, Banovac F, Levy E et al. Assessment of hepatic motion secondary to respiration for computer assisted interventions. Comp Aid Surg 2002; 7: 291-299
  • 28 Bhasin DK, Rana SS, Chandail VS. The Pancreas and Respiration: Oblivious to the Obvious!. JOP 2006; 7: 578-583
  • 29 Schullian P, Widmann G, Lang TB et al. Accuracy and diagnostic yield of CT-guided stereotactic liver biopsy of primary and secondary liver tumors. Comput Aided Surg 2011; 16: 181-187
  • 30 Toporek G, Wallach D, Weber S et al. Cone-beam computed tomography-guided stereotactic liver punctures: a phantom study. Cardiovasc Intervent Radiol 2013; 36: 1629-1637
  • 31 Widmann G, Wallach D, Toporek G et al. Angiographic C-arm CT- versus MDCT-guided stereotactic punctures of liver lesions: nonrigid phantom study. Am J Roentgenol Am J Roentgenol 2013; 201: 1136-1140
  • 32 Cholongitas E, Senzolo M, Standish R et al. A Systematic Review of the Quality of Liver Biopsy Specimens. Am J Clin Pathol 2006; 125: 710-721