Z Orthop Unfall 2015; 153(2): 198-202
DOI: 10.1055/s-0035-1545802
Aus den Sektionen – AE Deutsche Gesellschaft für Endoprothetik
Georg Thieme Verlag KG Stuttgart · New York

Keramik-Keramik-Gleitpaarungen in der primären Hüftendoprothetik

Ceramic-on-Ceramic Bearings in Total Hip Arthroplasty (THA)
U. Sentürk
Centrum für Muskuloskeletale Chirurgie, Klinik für Orthopädie, Charité – Universitätsmedizin Berlin
,
C. Perka
Centrum für Muskuloskeletale Chirurgie, Klinik für Orthopädie, Charité – Universitätsmedizin Berlin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. April 2015 (online)

Zusammenfassung

Die Hauptursache für die Revision in der Hüftendoprothetik ist die abriebbedingte aseptische Lockerung. Jüngere und aktive Patienten nach endoprothetischem Gelenkersatz führen zu hohen Beanspruchungen insbesondere der Gleitpaarungen. Die Fortschritte, vor allem für Aluminiumoxid-Keramik-Keramik-Gleitpaarungen und bei Mischkeramiken, haben viele Probleme der Vergangenheit gelöst und führen zu guten In-vitro-Resultaten. Moderne Keramiken (Aluminiumoxid oder Mischkeramiken mit Aluminiumoxid) sind extrem hart, kratzfest, biokompatibel, haben einen niedrigen Reibungskoeffizienten, zeigen hervorragende Lubrikationseigenschaften und weisen die geringsten Abriebraten im Vergleich zu allen anderen in der Hüftendoprothetik eingesetzten Gleitpaarungen auf. Der Nachteil von Keramiken ist das Risiko des Materialversagens, d. h. des Keramikbruchs. Die neue Generation von Mischkeramiken (Delta-Keramik), hat das Risiko von Kopfbrüchen auf 0,03–0,05 % reduziert, das Risiko für Inlay-Brüche blieb mit etwa 0,02 % jedoch unverändert. Unter der Annahme einer impingementfreien Komponentenimplantation haben Keramik-Keramik-Gleitpaarungen wesentliche Vorteile gegenüber den anderen Gleitpaarungskombinationen. Aufgrund der Materialhärte, produzieren Keramik-Keramik-Gleitpaarungen weniger Drittkörperabrieb und sind praktisch unempfindlich gegen Beschädigungen durch Instrumente während der Operation. Eine spezifische Komplikation für Keramik-Keramik-Gleitpaarungen ist die Geräuschentstehung („squeeking“). Die hohe Rate an in der Literatur beschriebenen Quietschphänomenen (0,45–10,7 %) unterstreicht die Bedeutung der exakten Implantatpositionierung, der Prothesenschaftauswahl und der Patientenselektion. Bei genauer Implantatpositionierung ist dieses Problem mit vielen Implantatdesigns selten und ohne klinische Relevanz. Die verbesserte Tribologie und die dadurch vermutlich resultierende Langlebigkeit machen Keramik-Keramik-Gleitpaarungen zur Gleitpaarung der Wahl für junge und aktive Patienten.

Abstract

The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03–0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is “squeaking”. The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients.

 
  • Literatur

  • 1 Huo MH, Brown BS. Whatʼs new in hip arthroplasty. J Bone Joint Surg Am 2003; 85: 1852-1864
  • 2 Schmotzer H, Learmonth ID. Alternative bearing surfaces: crosslinked polyethylene. Hip Int 2003; 13: 125-126
  • 3 Steinbeck MJ, Jablonowski LJ, Parvizi J et al. The role of oxidative stress in aseptic loosening of total hip arthroplasties. J Arthroplasty 2014; 29: 843-849
  • 4 Kurtz SM, Gawel HA, Patel JD. History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 2011; 469: 2262-2277
  • 5 Graves S, Lynch J, Griffith L et al. Revision of Hip & Knee Arthroplasty Supplementary Report 2013. National Joint Replacement Registry, Australian Orthopaedic Association, 2013.
  • 6 Shen C, Tang ZH, Hu JZ et al. Does cross-linked polyethylene decrease the revision rate of total hip arthroplasty compared with conventional polyethylene? A meta-analysis. Orthop Traumatol Surg Res 2014; 100: 745-750
  • 7 Glyn-Jones S, Thomas GE, Garfjeld-Roberts P et al. The John Charnley Award: highly crosslinked polyethylene in total hip arthroplasty decreases long-term wear: a double-blind randomized trial. Clin Orthop Relat Res 2015; 473: 432-438
  • 8 Girard J, Bocquet D, Autissier G et al. Metal-on-metal hip arthroplasty in patients thirty years of age or younger. J Bone Joint Surg Am 2010; 92: 2419-2426
  • 9 Migaud H, Putman S, Combes A et al. Metal-on-metal bearing: is this the end of the line? We do not think so. HSS J 2012; 8: 262-269
  • 10 Charnley J. Tissue reaction to the polytetraflouroethyene. Lancet 1963; 2: 1379
  • 11 Oonishi H, Kuno M, Tsuji E et al. The optimum dose of gamma radiation-heavy doses to low wear polyethylene in total hip prostheses. J Mater Sci Mater Med 1997; 8: 11-18
  • 12 Grobbelaar CJ, du Plessis TA, Marais F. The radiation improvement of polyethylene prostheses. A preliminary study. J Bone Joint Surg Br 1978; 60-B: 370-374
  • 13 Orala E, Ghalia BW, Rowella SL et al. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength. Biomaterials 2010; 31: 7051-7060
  • 14 Duffy GP, Wannomae KK, Rowell SL et al. Fracture of a cross-linked polyethylene liner due to impingement. J Arthroplasty 2009; 24: 158.e15-e19
  • 15 Bradford L, Baker D, Ries MD et al. Fatigue crack propagation resistance of highly crosslinked polyethylene. Clin Orthop Relat Res 2004; 429: 68-72
  • 16 Currier BH, Currier JH, Mayor MB et al. Evaluation of oxidation and fatigue damage of retrieved crossfire polyethylene acetabular cups. J Bone Joint Surg Am 2007; 89: 2023-2029
  • 17 Furmanski J, Gupta S, Chawan A et al. Aspherical femoral head with highly cross-linked ultra-high molecular weight polyethylene surface cracking. A case report. J Bone Joint Surg Am 2007; 89: 2266-2270
  • 18 Tower SS, Currier JH, Currier BH et al. Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am 2007; 89: 2212-2217
  • 19 Bradford L, Baker DA, Graham J et al. Wear and surface cracking in early retrieved highly cross-linked polyethylene acetabular liners. J Bone Joint Surg Am 2004; 86: 1271-1282
  • 20 Bragdon CR, Doerner M, Martell J et al. The 2012 John Charnley Award: Clinical multicenter studies of the wear performance of highly crosslinked remelted polyethylene in THA. Clin Orthop Relat Res 2013; 471: 393-402
  • 21 Johnson AJ, Loving L, Herrera L et al. Short-term wear evaluation of thin acetabular liners on 36-mm femoral heads. Clin Orthop Relat Res 2014; 472: 624-629
  • 22 Fisher J, Jin Z, Tipper J et al. Tribology of alternative bearings. Clin Orthop Relat Res 2006; 453: 25-34
  • 23 Willmann G, Pfaff HG, Richter HG. [Increasing the safety of ceramic femoral heads for hip prostheses]. Biomed Tech (Berl) 1995; 40: 342-346
  • 24 Korim M, Scholes S, Unsworth A et al. Retrieval analysis of alumina ceramic-on-ceramic bearing couples. Acta Orthop 2014; 85: 133-140
  • 25 DʼAntonio JA, Sutton K. Ceramic materials as bearing surfaces for total hip arthroplasty. J Am Acad Orthop Surg 2009; 17: 63-68
  • 26 Jazrawi LM, Bogner E, Della Walle CJ et al. Wear rates of ceramic-on-ceramic bearing surfaces in total hip implants: a 12-year follow-up study. J Arthroplasty 1999; 14: 781-787
  • 27 Petsatodis GE, Papadopoulos PP, Papavasiliou KA et al. Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. J Bone Joint Surg Am 2010; 92: 639-644
  • 28 Lee YK, Ha YC, Yoo JJ et al. Alumina-on-alumina total hip arthroplasty: a concise follow-up, at a minimum of ten years, of a previous report. J Bone Joint Surg Am 2010; 92: 1715-1719
  • 29 DʼAntonio JA, Capello WN, Naughton M. Ceramic bearings for total hip arthroplasty have high survivorship at 10 years. Clin Orthop Relat Res 2012; 470: 373-381
  • 30 Fishbone PR, Severson EP, Cabanela ME et al. Ceramic-on-ceramic total hip arthroplasty in patients younger than 20 years. J Arthroplasty 2012; 27: 213-219
  • 31 Byun JW, Yoon TR, Park KS et al. Third-generation ceramic-on-ceramic total hip arthroplasty in patients younger than 30 years with osteonecrosis of femoral head. J Arthroplasty 2012; 27: 1337-1343
  • 32 Mesko JW, DʼAntonio JA, Capello WN et al. Ceramic-on-ceramic hip outcome at a 5- to 10-year interval: has it lived up to its expectations?. J Arthroplasty 2011; 26: 172-177
  • 33 Hothan A, Huber G, Weiss C et al. The influence of component design, bearing clearance and axial load on the squeaking characteristics of ceramic hip articulations. J Biomech 2011; 44: 837-841
  • 34 Restrepo C, Post ZD, Kai B et al. The effect of stem design on the prevalence of squeaking following ceramic-on-ceramic bearing total hip arthroplasty. J Bone Joint Surg Am 2010; 92: 550-557
  • 35 Restrepo C, Parvizi J, Kurtz SM et al. The noisy ceramic hip: is component malpositioning the cause?. J Arthroplasty 2008; 23: 643-649
  • 36 Parvizi J, Adeli B, Wong JC et al. A squeaky reputation: the problem may be design-dependent. Clin Orthop Relat Res 2011; 469: 1598-1605
  • 37 Chevillotte C, Trousdale RT, Chen Q et al. The 2009 Frank Stinchfield Award: “Hip squeaking”: a biomechanical study of ceramic-on-ceramic bearing surfaces. Clin Orthop Relat Res 2010; 468: 345-350
  • 38 Haq RU, Park KS, Seon JK et al. Squeaking after third-generation ceramic-on-ceramic total hip arthroplasty. J Arthroplasty 2012; 27: 909-915
  • 39 Leslie IJ, Williams S, Isaac G et al. High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthop Relat Res 2009; 467: 2259-2265
  • 40 Sadoghi P, Pawelka W, Liebensteiner MC et al. The incidence of implant fractures after total hip arthroplasty. Int Orthop 2014; 38: 39-46
  • 41 Stokes AP, Rutherford AD. Mismatch of modular prosthetic components in total joint arthroplasty. The New Zealand experience. J Bone Joint Surg Br 2005; 87 (Suppl. 01) 32
  • 42 Bisseling P, Tan TZ, Campbell PA et al. The absence of a metal-on-metal bearing does not preclude the formation of a destructive pseudotumor in the hip – a case report. Acta Orthop 2013; 84: 437-441
  • 43 Rehmer A, Bishop NE, Morlock MM. Influence of assembly procedure and material combination on the strength of the taper connection at the head-neck junction of modular hip endoprostheses. Clin Biomech (Bristol, Avon) 2012; 27: 77-83
  • 44 Elkins JM, Callaghan JJ, Brown TD. Stability and trunnion wear potential in large-diameter metal-on-metal total hips: a finite element analysis. Clin Orthop Relat Res 2014; 472: 529-542