Semin Neurol 2015; 35(03): 201-208
DOI: 10.1055/s-0035-1552617
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Focal Cortical Dysplasia

Peter B. Crino
1   Department of Neurology, Shriners Hospital Pediatric Research Center and Temple University, Philadelphia, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
10 June 2015 (online)

Abstract

Focal cortical dysplasias are common malformations of cerebral cortical development and are highly associated with medically intractable epilepsy. They have been classified into neuropathological subtypes (type Ia, Ib, IIa, IIb, and III) based on the severity of cytoarchitectural disruption—tangential or radial dispersion, or loss of laminar structure—and the presence of unique cells types such as cytomegalic neurons or balloon cells. Most focal cortical dysplasias can be identified on neuroimaging and many require resective epilepsy surgery to cure refractory seizures. The pathogenesis of focal cortical dysplasias remains to be defined, although there is recent evidence to suggest that focal cortical dysplasias arise from de novo somatic mutations occurring during brain development. Some focal cortical dysplasia subtypes show a link to the mammalian target of rapamycin signaling cascade; this has now extended to other cortical malformations, including hemimegalencephaly.

Note

There has been a recent publication reporting somatic mutations in MTOR in FCDIIa and FCDIIb (Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 2015;21(4):395–400).


 
  • References

  • 1 Tassi L, Colombo N, Garbelli R , et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 2002; 125 (Pt 8) 1719-1732
  • 2 Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11 (2) 251-268
  • 3 Sisodiya SM. Malformations of cortical development: burdens and insights from important causes of human epilepsy. Lancet Neurol 2004; 3 (1) 29-38
  • 4 Taylor DC, Falconer MA, Bruton CJ, Corsellis JA. Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971; 34 (4) 369-387
  • 5 Crome L. Infantile cerebral gliosis with giant nerve cells. J Neurol Neurosurg Psychiatry 1957; 20 (2) 117-124
  • 6 Sims J. On hypertrophy and atrophy of the brain. Med Chir Trans 1835; 19: 315-380
  • 7 Bourneville D. Sclérose tubéreuse des circonvolutions cérébrales: idiotie et épilepsie hémiplégique. Arch Neurol (Paris) 1880; 1: 81-91
  • 8 Mischel PS, Nguyen LP, Vinters HV. Cerebral cortical dysplasia associated with pediatric epilepsy. Review of neuropathologic features and proposal for a grading system. J Neuropathol Exp Neurol 1995; 54 (2) 137-153
  • 9 Palmini A, Najm I, Avanzini G , et al. Terminology and classification of the cortical dysplasias. Neurology 2004; 62 (6) (Suppl. 03) S2-S8
  • 10 Blümcke I, Thom M, Aronica E , et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011; 52 (1) 158-174
  • 11 Barkovich AJ, Kuzniecky RI, Dobyns WB, Jackson GD, Becker LE, Evrard P. A classification scheme for malformations of cortical development. Neuropediatrics 1996; 27 (2) 59-63
  • 12 Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355 (13) 1345-1356
  • 13 Orlova KA, Tsai V, Baybis M , et al. Early progenitor cell marker expression distinguishes type II from type I focal cortical dysplasias. J Neuropathol Exp Neurol 2010; 69 (8) 850-863
  • 14 Lamparello P, Baybis M, Pollard J , et al. Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 2007; 130 (Pt 9) 2267-2276
  • 15 Hadjivassiliou G, Martinian L, Squier W , et al. The application of cortical layer markers in the evaluation of cortical dysplasias in epilepsy. Acta Neuropathol 2010; 120 (4) 517-528
  • 16 Park SH, Pepkowitz SH, Kerfoot C , et al. Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol 1997; 94 (2) 180-186
  • 17 Prabowo AS, Anink JJ, Lammens M , et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 2013; 23 (1) 45-59
  • 18 Tsai V, Parker WE, Orlova KA , et al. Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb Cortex 2014; 24 (2) 315-327
  • 19 Garbelli R, Meroni A, Magnaghi G , et al. Architectural (Type IA) focal cortical dysplasia and parvalbumin immunostaining in temporal lobe epilepsy. Epilepsia 2006; 47 (6) 1074-1078
  • 20 Simpson SL, Prayson RA. Post-surgical outcome for epilepsy associated with type I focal cortical dysplasia subtypes. Mod Pathol 2014; 27 (11) 1455-1460
  • 21 Colombo N, Salamon N, Raybaud C, Ozkara C, Barkovich AJ. Imaging of malformations of cortical development. Epileptic Disord 2009; 11 (3) 194-205
  • 22 Chu-Shore CJ, Major P, Montenegro M, Thiele E. Cyst-like tubers are associated with TSC2 and epilepsy in tuberous sclerosis complex. Neurology 2009; 72 (13) 1165-1169
  • 23 Gallagher A, Grant EP, Madan N, Jarrett DY, Lyczkowski DA, Thiele EA. MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 2010; 257 (8) 1373-1381
  • 24 Krsek P, Maton B, Korman B , et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol 2008; 63 (6) 758-769
  • 25 Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010; 51 (7) 1236-1241
  • 26 Orlova KA, Crino PB. The tuberous sclerosis complex. Ann N Y Acad Sci 2010; 1184: 87-105
  • 27 Baybis M, Yu J, Lee A , et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol 2004; 56 (4) 478-487
  • 28 Miyata H, Chiang AC, Vinters HV. Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol 2004; 56 (4) 510-519
  • 29 Ljungberg MC, Bhattacharjee MB, Lu Y , et al. Activation of mammalian target of rapamycin in cytomegalic neurons of human cortical dysplasia. Ann Neurol 2006; 60 (4) 420-429
  • 30 Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 2008; 63 (4) 454-465
  • 31 Crino PB, Aronica E, Baltuch G, Nathanson KL. Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 2010; 74 (21) 1716-1723
  • 32 Qin W, Chan JA, Vinters HV , et al. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 2010; 20 (6) 1096-1105
  • 33 Feliciano DM, Su T, Lopez J, Platel JC, Bordey A. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 2011; 121 (4) 1596-1607
  • 34 Bosnjak VM, Daković I, Duranović V, Lujić L, Krakar G, Marn B. Malformations of cortical development in children with congenital cytomegalovirus infection - A study of nine children with proven congenital cytomegalovirus infection. Coll Antropol 2011; 35 (Suppl. 01) 229-234
  • 35 Crino PB. Focal brain malformations: seizures, signaling, sequencing. Epilepsia 2009; 50 (Suppl. 09) 3-8
  • 36 Crino PB. mTOR: a pathogenic signaling pathway in developmental brain malformations. Trends Mol Med 2011; 17 (12) 734-742
  • 37 Becker AJ, Urbach H, Scheffler B , et al. Focal cortical dysplasia of Taylor's balloon cell type: mutational analysis of the TSC1 gene indicates a pathogenic relationship to tuberous sclerosis. Ann Neurol 2002; 52 (1) 29-37
  • 38 Gumbinger C, Rohsbach CB, Schulze-Bonhage A , et al. Focal cortical dysplasia: a genotype-phenotype analysis of polymorphisms and mutations in the TSC genes. Epilepsia 2009; 50 (6) 1396-1408
  • 39 Baulac S, Ishida S, Marsan E , et al. Familial focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations. Ann Neurol 2015; 77 (4) 675-683
  • 40 Conti V, Pantaleo M, Barba C , et al. Focal dysplasia of the cerebral cortex and infantile spasms associated with somatic 1q21.1-q44 duplication including the AKT3 gene. Clin Genet 2014;
  • 41 Barba C, Parrini E, Coras R , et al. Co-occurring malformations of cortical development and SCN1A gene mutations. Epilepsia 2014; 55 (7) 1009-1019
  • 42 Aronica E, Boer K, Baybis M, Yu J, Crino P. Co-expression of cyclin D1 and phosphorylated ribosomal S6 proteins in hemimegalencephaly. Acta Neuropathol 2007; 114 (3) 287-293
  • 43 Samadani U, Judkins AR, Akpalu A, Aronica E, Crino PB. Differential cellular gene expression in ganglioglioma. Epilepsia 2007; 48 (4) 646-653
  • 44 Liu J, Reeves C, Michalak Z , et al. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun 2014; 2: 71
  • 45 Parker WE, Orlova KA, Heuer GG , et al. Enhanced epidermal growth factor, hepatocyte growth factor, and vascular endothelial growth factor expression in tuberous sclerosis complex. Am J Pathol 2011; 178 (1) 296-305
  • 46 Boer K, Troost D, Spliet WG, van Rijen PC, Gorter JA, Aronica E. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB. Acta Neuropathol 2008; 115 (6) 683-696
  • 47 Schick V, Majores M, Engels G , et al. Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with balloon cells. Brain Pathol 2007; 17 (2) 165-173
  • 48 Yasin SA, Ali AM, Tata M , et al. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol 2013; 126 (2) 207-218
  • 49 Iyer A, Zurolo E, Spliet WG , et al. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 2010; 51 (9) 1763-1773
  • 50 Chen J, Tsai V, Parker WE, Aronica E, Baybis M, Crino PB. Detection of human papillomavirus in human focal cortical dysplasia type IIB. Ann Neurol 2012; 72 (6) 881-892
  • 51 Liu S, Lu L, Cheng X, Xu G, Yang H. Viral infection and focal cortical dysplasia. Ann Neurol 2014; 75 (4) 614-616
  • 52 Coras R, Korn K, Bien CG , et al. No evidence for human papillomavirus infection in focal cortical dysplasia IIb. Ann Neurol 2015; 77 (2) 312-319
  • 53 Dibbens LM, de Vries B, Donatello S , et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013; 45 (5) 546-551
  • 54 Scheffer IE, Heron SE, Regan BM , et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014; 75 (5) 782-787
  • 55 Lal D, Reinthaler EM, Schubert J , et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol 2014; 75 (5) 788-792
  • 56 Bar-Peled L, Chantranupong L, Cherniack AD , et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340 (6136) 1100-1106
  • 57 Strauss KA, Puffenberger EG, Huentelman MJ , et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 2006; 354 (13) 1370-1377
  • 58 Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2008; 49 (1) 8-21
  • 59 Wong M, Crino PB. mTOR and epileptogenesis in developmental brain malformations. In: Noebels JL, , et al. , eds. Jasper's Basic Mechanisms of the Epilepsies. New York, NY: Oxford University Press; 2012
  • 60 Lasarge CL, Danzer SC. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci 2014; 7: 18
  • 61 Sha LZ, Xing XL, Zhang D , et al. Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. PLoS ONE 2012; 7 (6) e39152
  • 62 Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009; 29 (21) 6964-6972
  • 63 van Vliet EA, Forte G, Holtman L , et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 2012; 53 (7) 1254-1263
  • 64 Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 2011; 43 (2) 322-329
  • 65 Theilhaber J, Rakhade SN, Sudhalter J , et al. Gene expression profiling of a hypoxic seizure model of epilepsy suggests a role for mTOR and Wnt signaling in epileptogenesis. PLoS ONE 2013; 8 (9) e74428
  • 66 Berdichevsky Y, Dryer AM, Saponjian Y , et al. PI3K-Akt signaling activates mTOR-mediated epileptogenesis in organotypic hippocampal culture model of post-traumatic epilepsy. J Neurosci 2013; 33 (21) 9056-9067
  • 67 Sosunov AA, Wu X, McGovern RA , et al. The mTOR pathway is activated in glial cells in mesial temporal sclerosis. Epilepsia 2012; 53 (Suppl. 01) 78-86
  • 68 Allen AS, Berkovic SF, Cossette P , et al; Epi4K Consortium; Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 2013; 501 (7466) 217-221
  • 69 Palmini A, Gambardella A, Andermann F , et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 1995; 37 (4) 476-487
  • 70 Matsumoto R, Kinoshita M, Taki J , et al. In vivo epileptogenicity of focal cortical dysplasia: a direct cortical paired stimulation study. Epilepsia 2005; 46 (11) 1744-1749
  • 71 Otsubo H, Iida K, Oishi M , et al. Neurophysiologic findings of neuronal migration disorders: intrinsic epileptogenicity of focal cortical dysplasia on electroencephalography, electrocorticography, and magnetoencephalography. J Child Neurol 2005; 20 (4) 357-363
  • 72 Najm I, Ying Z, Babb T , et al. Mechanisms of epileptogenicity in cortical dysplasias. Neurology 2004; 62 (6) (Suppl. 03) S9-S13
  • 73 Cepeda C, André VM, Levine MS , et al. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav 2006; 9 (2) 219-235
  • 74 Ying Z, Babb TL, Mikuni N, Najm I, Drazba J, Bingaman W. Selective coexpression of NMDAR2A/B and NMDAR1 subunit proteins in dysplastic neurons of human epileptic cortex. Exp Neurol 1999; 159 (2) 409-418
  • 75 Crino PB, Duhaime AC, Baltuch G, White R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 2001; 56 (7) 906-913
  • 76 Möddel G, Jacobson B, Ying Z , et al. The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dysplasia. Brain Res 2005; 1046 (1-2) 10-23
  • 77 Finardi A, Gardoni F, Bassanini S , et al. NMDA receptor composition differs among anatomically diverse malformations of cortical development. J Neuropathol Exp Neurol 2006; 65 (9) 883-893
  • 78 Cepeda C, André VM, Flores-Hernández J , et al. Pediatric cortical dysplasia: correlations between neuroimaging, electrophysiology and location of cytomegalic neurons and balloon cells and glutamate/GABA synaptic circuits. Dev Neurosci 2005; 27 (1) 59-76
  • 79 Calcagnotto ME, Paredes MF, Tihan T, Barbaro NM, Baraban SC. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J Neurosci 2005; 25 (42) 9649-9657
  • 80 Garbelli R, Munari C, De Biasi S , et al. Taylor's cortical dysplasia: a confocal and ultrastructural immunohistochemical study. Brain Pathol 1999; 9 (3) 445-461
  • 81 Spreafico R, Battaglia G, Arcelli P , et al. Cortical dysplasia: an immunocytochemical study of three patients. Neurology 1998; 50 (1) 27-36
  • 82 Spreafico R, Tassi L, Colombo N , et al. Inhibitory circuits in human dysplastic tissue. Epilepsia 2000; 41 (Suppl. 06) S168-S173
  • 83 D'Antuono M, Louvel J, Köhling R , et al. GABAA receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex. Brain 2004; 127 (Pt 7) 1626-1640
  • 84 Krueger DA, Care MM, Holland K , et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010; 363 (19) 1801-1811
  • 85 Krueger DA, Wilfong AA, Holland-Bouley K , et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 2013; 74 (5) 679-687
  • 86 Orlova KA, Parker WE, Heuer GG , et al. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. J Clin Invest 2010; 120 (5) 1591-1602
  • 87 Parker WE, Orlova KA, Parker WH , et al. Rapamycin prevents seizures after depletion of STRADA in a rare neurodevelopmental disorder. Sci Transl Med 2013; 5 (182) 182ra53