Subscribe to RSS
DOI: 10.1055/s-0035-1552620
Progressive Myoclonus Epilepsies
Publication History
Publication Date:
10 June 2015 (online)
Abstract
The progressive myoclonus epilepsies (PMEs) comprise a group of rare and heterogeneous disorders defined by the combination of action myoclonus, epileptic seizures, and progressive neurologic deterioration. Neurologic deterioration may include progressive cognitive decline, ataxia, neuropathy, and myopathy. The gene defects for the most common forms of PME (Unverricht–Lundborg disease, Lafora disease, several forms of neuronal ceroid lipofuscinoses, myoclonus epilepsy with ragged-red fibers [MERRF], and type 1 and 2 sialidoses) have been identified. The prognosis of a PME depends on the specific disease. Lafora disease, the neuronal ceroid lipofuscinoses, and the neuronopathic form of Gaucher disease have an invariably fatal course. In contrast, Unverricht–Lundborg disease has a much slower progression, and with adequate care many patients have a normal life span. The specific diseases that cause PME are diagnosed by recognition of their age of onset, the associated clinical symptoms, the clinical course, the pattern of inheritance, and by special investigations such as enzyme measurement, skin/muscle biopsy, or gene testing.
-
References
- 1 Marseille Consensus Group. Classification of progressive myoclonus epilepsies and related disorders. Ann Neurol 1990; 28 (1) 113-116
- 2 Franceschetti S, Michelucci R, Canafoglia L , et al; Collaborative LICE study group on PMEs. Progressive myoclonic epilepsies: definitive and still undetermined causes. Neurology 2014; 82 (5) 405-411
- 3 Muona M, Berkovic SF, Dibbens LM , et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 2015; 47 (1) 39-46
- 4 Kälviäinen R, Khyuppenen J, Koskenkorva P, Eriksson K, Vanninen R, Mervaala E. Clinical picture of EPM1-Unverricht-Lundborg disease. Epilepsia 2008; 49 (4) 549-556
- 5 Joensuu T, Lehesjoki AE, Kopra O. Molecular background of EPM1-Unverricht-Lundborg disease. Epilepsia 2008; 49 (4) 557-563
- 6 Canafoglia L, Gennaro E, Capovilla G , et al. Electroclinical presentation and genotype-phenotype relationships in patients with Unverricht-Lundborg disease carrying compound heterozygous CSTB point and indel mutations. Epilepsia 2012; 53 (12) 2120-2127
- 7 Pinto E, Freitas J, Duarte AJ , et al. Unverricht-Lundborg disease: homozygosity for a new splicing mutation in the cystatin B gene. Epilepsy Res 2012; 99 (1-2) 187-190
- 8 Hyppönen J, Äikiä M, Joensuu T , et al. Refining the phenotype of Unverricht-Lundborg disease (EPM1): A population-wide Finnish study. Neurology 2015; ; In press
- 9 Koskenkorva P, Khyuppenen J, Niskanen E , et al. Motor cortex and thalamic atrophy in Unverricht-Lundborg disease: voxel-based morphometric study. Neurology 2009; 73 (8) 606-611
- 10 Koskenkorva P, Niskanen E, Hyppönen J , et al. Sensorimotor, visual, and auditory cortical atrophy in Unverricht-Lundborg disease mapped with cortical thickness analysis. AJNR Am J Neuroradiol 2012; 33 (5) 878-883
- 11 Danner N, Julkunen P, Khyuppenen J , et al. Altered cortical inhibition in Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1). Epilepsy Res 2009; 85 (1) 81-88
- 12 Magaudda A, Ferlazzo E, Nguyen VH, Genton P. Unverricht-Lundborg disease, a condition with self-limited progression: long-term follow-up of 20 patients. Epilepsia 2006; 47 (5) 860-866
- 13 Lalioti MD, Scott HS, Genton P , et al. A PCR amplification method reveals instability of the dodecamer repeat in progressive myoclonus epilepsy (EPM1) and no correlation between the size of the repeat and age at onset. Am J Hum Genet 1998; 62 (4) 842-847
- 14 Koskenkorva P, Hyppönen J, Aikiä M , et al. Severer phenotype in Unverricht-Lundborg disease (EPM1) patients compound heterozygous for the dodecamer repeat expansion and the c.202C>T mutation in the CSTB gene. Neurodegener Dis 2011; 8 (6) 515-522
- 15 Serratosa JM, Minassian BA, Ganesh S. Progressive myoclonus epilepsy of Lafora. In Noebels JL, Avoli M, Rogawski MA, , et al, eds. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th ed. Bethesda, MD: National Center for Biotechnology Information; 2012. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK98134/ Accessed November 15, 2014
- 16 Striano P, Zara F, Turnbull J , et al. Typical progression of myoclonic epilepsy of the Lafora type: a case report. Nat Clin Pract Neurol 2008; 4 (2) 106-111
- 17 Turnbull J, DePaoli-Roach AA, Zhao X , et al. PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease. PLoS Genet 2011; 7 (4) e1002037
- 18 Baykan B, Striano P, Gianotti S , et al. Late-onset and slow-progressing Lafora disease in four siblings with EPM2B mutation. Epilepsia 2005; 46 (10) 1695-1697
- 19 Lesca G, Boutry-Kryza N, de Toffol B , et al. Novel mutations in EPM2A and NHLRC1 widen the spectrum of Lafora disease. Epilepsia 2010; 51 (9) 1691-1698
- 20 Ferlazzo E, Canafoglia L, Michelucci R , et al. Mild Lafora disease: clinical, neurophysiologic, and genetic findings. Epilepsia 2014; 55 (12) e129-e133
- 21 Guerrero R, Vernia S, Sanz R , et al. A PTG variant contributes to a milder phenotype in Lafora disease. PLoS ONE 2011; 6 (6) e21294
- 22 Turnbull J, Girard JM, Lohi H , et al. Early-onset Lafora body disease. Brain 2012; 135 (Pt 9) 2684-2698
- 23 Haltia M. The neuronal ceroid-lipofuscinoses. J Neuropathol Exp Neurol 2003; 62 (1) 1-13
- 24 Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 2005; 6 (3) 107-126
- 25 Williams RE, Mole SE. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology 2012; 79 (2) 183-191
- 26 Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2012; 33 (1) 42-63
- 27 Patiño LC, Battu R, Ortega-Recalde O , et al. Exome sequencing is an efficient tool for variant late-infantile neuronal ceroid lipofuscinosis molecular diagnosis. PLoS ONE 2014; 9 (10) e109576
- 28 Jadav RH, Sinha S, Yasha TC , et al. Clinical, electrophysiological, imaging, and ultrastructural description in 68 patients with neuronal ceroid lipofuscinoses and its subtypes. Pediatr Neurol 2014; 50 (1) 85-95
- 29 Bonten EJ, Arts WF, Beck M , et al. Novel mutations in lysosomal neuraminidase identify functional domains and determine clinical severity in sialidosis. Hum Mol Genet 2000; 9 (18) 2715-2725
- 30 Lowden JA, O'Brien JS. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet 1979; 31 (1) 1-18
- 31 Canafoglia L, Franceschetti S, Uziel G , et al. Characterization of severe action myoclonus in sialidoses. Epilepsy Res 2011; 94 (1-2) 86-93
- 32 Canafoglia L, Robbiano A, Pareyson D , et al. Expanding sialidosis spectrum by genome-wide screening: NEU1 mutations in adult-onset myoclonus. Neurology 2014; 82 (22) 2003-2006
- 33 Noer AS, Sudoyo H, Lertrit P , et al. A tRNA(Lys) mutation in the mtDNA is the causal genetic lesion underlying myoclonic epilepsy and ragged-red fiber (MERRF) syndrome. Am J Hum Genet 1991; 49 (4) 715-722
- 34 Mancuso M, Orsucci D, Angelini C , et al. Phenotypic heterogeneity of the 8344A>G mtDNA “MERRF” mutation. Neurology 2013; 80 (22) 2049-2054
- 35 Mancuso M, Orsucci D, Angelini C , et al. Myoclonus in mitochondrial disorders. Mov Disord 2014; 29 (6) 722-728
- 36 Baris HN, Cohen IJ, Mistry PK. Gaucher disease: the metabolic defect, pathophysiology, phenotypes and natural history. Pediatr Endocrinol Rev 2014; 12 (Suppl. 01) 72-81
- 37 Park JK, Orvisky E, Tayebi N , et al. Myoclonic epilepsy in Gaucher disease: genotype-phenotype insights from a rare patient subgroup. Pediatr Res 2003; 53 (3) 387-395
- 38 Lee N-C, Chien Y-H, Wong S-L , et al. Outcome of early-treated type III Gaucher disease patients. Blood Cells Mol Dis 2014; 53 (3) 105-109
- 39 Tsuji S. Dentatorubral-pallidoluysian atrophy. Handb Clin Neurol 2012; 103: 587-594
- 40 Ikeuchi T, Onodera O, Oyake M, Koide R, Tanaka H, Tsuji S. Dentatorubral-pallidoluysian atrophy (DRPLA): close correlation of CAG repeat expansions with the wide spectrum of clinical presentations and prominent anticipation. Semin Cell Biol 1995; 6 (1) 37-44
- 41 Berkovic SF, Dibbens LM, Oshlack A , et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 2008; 82 (3) 673-684
- 42 Dibbens LM, Michelucci R, Gambardella A , et al. SCARB2 mutations in progressive myoclonus epilepsy (PME) without renal failure. Ann Neurol 2009; 66 (4) 532-536
- 43 Bassuk AG, Wallace RH, Buhr A , et al. A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet 2008; 83 (5) 572-581
- 44 Boissé Lomax L, Bayly MA, Hjalgrim H , et al. ‘North Sea’ progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain 2013; 136 (Pt 4) 1146-1154
- 45 Iivanainen M, Himberg JJ. Valproate and clonazepam in the treatment of severe progressive myoclonus epilepsy. Arch Neurol 1982; 39 (4) 236-238
- 46 Striano P, Belcastro V. Treatment of myoclonic seizures. Expert Rev Neurother 2012; 12 (12) 1411-1417 , quiz 1418
- 47 Roivainen R, Karvonen MK, Puumala T. Seizure control in Unverricht-Lundborg disease: a single-centre study. Epileptic Disord 2014; 16 (2) 191-195
- 48 Koskiniemi M, Van Vleymen B, Hakamies L, Lamusuo S, Taalas J. Piracetam relieves symptoms in progressive myoclonus epilepsy: a multicentre, randomised, double blind, crossover study comparing the efficacy and safety of three dosages of oral piracetam with placebo. J Neurol Neurosurg Psychiatry 1998; 64 (3) 344-348
- 49 Crest C, Dupont S, Leguern E, Adam C, Baulac M. Levetiracetam in progressive myoclonic epilepsy: an exploratory study in 9 patients. Neurology 2004; 62 (4) 640-643
- 50 Magaudda A, Gelisse P, Genton P. Antimyoclonic effect of levetiracetam in 13 patients with Unverricht-Lundborg disease: clinical observations. Epilepsia 2004; 45 (6) 678-681
- 51 Demir CF, Ozdemir HH, Müngen B. Efficacy of topiramate as add-on therapy in two different types of progressive myoclonic epilepsy. Acta Med (Hradec Kralove) 2013; 56 (1) 36-38
- 52 Aykutlu E, Baykan B, Gürses C, Bebek N, Büyükbabani N, Gökyigit A. Add-on therapy with topiramate in progressive myoclonic epilepsy. Epilepsy Behav 2005; 6 (2) 260-263
- 53 Italiano D, Pezzella M, Coppola A , et al. A pilot open-label trial of zonisamide in Unverricht-Lundborg disease. Mov Disord 2011; 26 (2) 341-343
- 54 Hynynen J, Komulainen T, Tukiainen E , et al. Acute liver failure after valproate exposure in patients with POLG1 mutations and the prognosis after liver transplantation. Liver Transpl 2014; 20 (11) 1402-1412
- 55 Finsterer J, Zarrouk Mahjoub S. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin Drug Metab Toxicol 2012; 8 (1) 71-79
- 56 Eldridge R, Iivanainen M, Stern R, Koerber T, Wilder BJ. “Baltic” myoclonus epilepsy: hereditary disorder of childhood made worse by phenytoin. Lancet 1983; 2 (8354) 838-842
- 57 Medina MT, Martínez-Juárez IE, Durón RM , et al. Treatment of myoclonic epilepsies of childhood, adolescence, and adulthood. Adv Neurol 2005; 95: 307-323
- 58 Tai KK, Truong DD. Brivaracetam is superior to levetiracetam in a rat model of post-hypoxic myoclonus. J Neural Transm 2007; 114 (12) 1547-1551
- 59 Mula M. Brivaracetam for the treatment of epilepsy in adults. Expert Rev Neurother 2014; 14 (4) 361-365
- 60 Fujimoto A, Yamazoe T, Yokota T , et al. Clinical utility of vagus nerve stimulation for progressive myoclonic epilepsy. Seizure 2012; 21 (10) 810-812