Semin Neurol 2015; 35(03): 277-287
DOI: 10.1055/s-0035-1552622
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Megalencephaly and Macrocephaly

Kellen D. Winden
1   Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
,
Christopher J. Yuskaitis
1   Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
,
Annapurna Poduri
2   Epilepsy Genetics Program, Division of Epilepsy and Clinical Electrophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
10 June 2015 (online)

Abstract

Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and behavioral problems; specific disorders have associations with overgrowth or abnormalities in other tissues. The molecular underpinnings of many of these disorders are now understood, providing insight into how dysregulation of critical pathways leads to disease. The advances in molecular understanding are leading to improved diagnosis of these conditions, as well as providing new avenues for therapeutic interventions.

 
  • References

  • 1 DeMyer W. Megalencephaly: types, clinical syndromes, and management. Pediatr Neurol 1986; 2 (6) 321-328
  • 2 Williams CA, Dagli A, Battaglia A. Genetic disorders associated with macrocephaly. Am J Med Genet A 2008; 146A (15) 2023-2037
  • 3 Mirzaa GM, Poduri A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am J Med Genet C Semin Med Genet 2014; 166C (2) 156-172
  • 4 Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 2014; 13 (7) 710-726
  • 5 Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135 (Pt 5) 1348-1369
  • 6 Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science 2013; 341 (6141) 1237758
  • 7 Baek ST, Gibbs EM, Gleeson JG, Mathern GW. Hemimegalencephaly, a paradigm for somatic postzygotic neurodevelopmental disorders. Curr Opin Neurol 2013; 26 (2) 122-127
  • 8 Rodriguez D. Leukodystrophies with astrocytic dysfunction. Handb Clin Neurol 2013; 113: 1619-1628
  • 9 Traeger EC, Rapin I. The clinical course of Canavan disease. Pediatr Neurol 1998; 18 (3) 207-212
  • 10 Baslow MH. Canavan's spongiform leukodystrophy: a clinical anatomy of a genetic metabolic CNS disease. J Mol Neurosci 2000; 15 (2) 61-69
  • 11 Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J. Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 1988; 29 (2) 463-471
  • 12 Quinlan RA, Brenner M, Goldman JE, Messing A. GFAP and its role in Alexander disease. Exp Cell Res 2007; 313 (10) 2077-2087
  • 13 Mignot C, Boespflug-Tanguy O, Gelot A, Dautigny A, Pham-Dinh D, Rodriguez D. Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cell Mol Life Sci 2004; 61 (3) 369-385
  • 14 Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 2013; 33 (25) 10195-10208
  • 15 Walkley SU. Neurobiology and cellular pathogenesis of glycolipid storage diseases. Philos Trans R Soc Lond B Biol Sci 2003; 358 (1433) 893-904
  • 16 Hedlund GL, Longo N, Pasquali M. Glutaric acidemia type 1. Am J Med Genet C Semin Med Genet 2006; 142C (2) 86-94
  • 17 Strauss KA, Puffenberger EG, Robinson DL, Morton DH. Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C Semin Med Genet 2003; 121C (1) 38-52
  • 18 Jafari P, Braissant O, Bonafé L, Ballhausen D. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 2011; 104 (4) 425-437
  • 19 Bushman DM, Chun J. The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 2013; 24 (4) 357-369
  • 20 Cai X, Evrony GD, Lehmann HS , et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Reports 2014; 8 (5) 1280-1289
  • 21 Lynch M. Evolution of the mutation rate. Trends Genet 2010; 26 (8) 345-352
  • 22 Poduri A, Evrony GD, Cai X , et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012; 74 (1) 41-48
  • 23 Jamuar SS, Lam AT, Kircher M , et al. Somatic mutations in cerebral cortical malformations. N Engl J Med 2014; 371 (8) 733-743
  • 24 Lipton JO, Sahin M. The neurology of mTOR. Neuron 2014; 84 (2) 275-291
  • 25 Crino PB. Molecular pathogenesis of tuber formation in tuberous sclerosis complex. J Child Neurol 2004; 19 (9) 716-725
  • 26 Baybis M, Yu J, Lee A , et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol 2004; 56 (4) 478-487
  • 27 Lim KC, Crino PB. Focal malformations of cortical development: new vistas for molecular pathogenesis. Neuroscience 2013; 252: 262-276
  • 28 Lee JH, Huynh M, Silhavy JL , et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 2012; 44 (8) 941-945
  • 29 Griffiths PD, Welch RJ, Gardner-Medwin D, Gholkar A, McAllister V. The radiological features of hemimegalencephaly including three cases associated with Proteus syndrome. Neuropediatrics 1994; 25 (3) 140-144
  • 30 Arya VB, Flanagan SE, Schober E, Rami-Merhar B, Ellard S, Hussain K. Activating AKT2 mutation: hypoinsulinemic hypoketotic hypoglycemia. J Clin Endocrinol Metab 2014; 99 (2) 391-394
  • 31 Rivière JB, Mirzaa GM, O'Roak BJ , et al; Finding of Rare Disease Genes (FORGE) Canada Consortium. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012; 44 (8) 934-940
  • 32 Hill AD, Chang BS, Hill RS , et al. A 2-Mb critical region implicated in the microcephaly associated with terminal 1q deletion syndrome. Am J Med Genet A 2007; 143A (15) 1692-1698
  • 33 Lindhurst MJ, Parker VE, Payne F , et al. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat Genet 2012; 44 (8) 928-933
  • 34 Kurek KC, Luks VL, Ayturk UM , et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 2012; 90 (6) 1108-1115
  • 35 Mirzaa GM, Paciorkowski AR, Smyser CD, Willing MC, Lind AC, Dobyns WB. The microcephaly-capillary malformation syndrome. Am J Med Genet A 2011; 155A (9) 2080-2087
  • 36 Nakamura K, Kato M, Tohyama J , et al. AKT3 and PIK3R2 mutations in two patients with megalencephaly-related syndromes: MCAP and MPPH. Clin Genet 2014; 85 (4) 396-398
  • 37 Liaw D, Marsh DJ, Li J , et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16 (1) 64-67
  • 38 Marsh DJ, Dahia PL, Zheng Z , et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 1997; 16 (4) 333-334
  • 39 Merks JH, de Vries LS, Zhou XP , et al. PTEN hamartoma tumour syndrome: variability of an entity. J Med Genet 2003; 40 (10) e111
  • 40 Butler MG, Dasouki MJ, Zhou XP , et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 2005; 42 (4) 318-321
  • 41 Buxbaum JD, Cai G, Chaste P , et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet B Neuropsychiatr Genet 2007; 144B (4) 484-491
  • 42 Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355 (13) 1345-1356
  • 43 Henske EP, Wessner LL, Golden J , et al. Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol 1997; 151 (6) 1639-1647
  • 44 Qin W, Chan JA, Vinters HV , et al. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 2010; 20 (6) 1096-1105
  • 45 Crino PB, Aronica E, Baltuch G, Nathanson KL. Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 2010; 74 (21) 1716-1723
  • 46 Crino PB. Evolving neurobiology of tuberous sclerosis complex. Acta Neuropathol 2013; 125 (3) 317-332
  • 47 Dibble CC, Elis W, Menon S , et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47 (4) 535-546
  • 48 Capo-Chichi JM, Tcherkezian J, Hamdan FF , et al. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly. J Med Genet 2013; 50 (11) 740-744
  • 49 Puffenberger EG, Strauss KA, Ramsey KE , et al. Polyhydramnios, megalencephaly and symptomatic epilepsy caused by a homozygous 7-kilobase deletion in LYK5. Brain 2007; 130 (Pt 7) 1929-1941
  • 50 Mirzaa GM, Parry DA, Fry AE , et al; FORGE Canada Consortium. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet 2014; 46 (5) 510-515
  • 51 Kida A, Kakihana K, Kotani S, Kurosu T, Miura O. Glycogen synthase kinase-3beta and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 2007; 26 (46) 6630-6640
  • 52 Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD. S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 2006; 24 (2) 185-197
  • 53 Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378 (6559) 785-789
  • 54 Gripp KW, Hopkins E, Doyle D, Dobyns WB. High incidence of progressive postnatal cerebellar enlargement in Costello syndrome: brain overgrowth associated with HRAS mutations as the likely cause of structural brain and spinal cord abnormalities. Am J Med Genet A 2010; 152A (5) 1161-1168
  • 55 Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet 2013; 14: 355-369
  • 56 Romano AA, Allanson JE, Dahlgren J , et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 2010; 126 (4) 746-759
  • 57 Aoki Y, Niihori T, Banjo T , et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 2013; 93 (1) 173-180
  • 58 Tartaglia M, Mehler EL, Goldberg R , et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001; 29 (4) 465-468
  • 59 Digilio MC, Conti E, Sarkozy A , et al. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet 2002; 71 (2) 389-394
  • 60 Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics 2009; 123 (1) 124-133
  • 61 Brems H, Chmara M, Sahbatou M , et al. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 2007; 39 (9) 1120-1126
  • 62 Ménard C, Hein P, Paquin A , et al. An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 2002; 36 (4) 597-610
  • 63 Ke Y, Zhang EE, Hagihara K , et al. Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 2007; 27 (19) 6706-6717
  • 64 Gauthier AS, Furstoss O, Araki T , et al. Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron 2007; 54 (2) 245-262
  • 65 Ehrman LA, Nardini D, Ehrman S , et al. The protein tyrosine phosphatase Shp2 is required for the generation of oligodendrocyte progenitor cells and myelination in the mouse telencephalon. J Neurosci 2014; 34 (10) 3767-3778
  • 66 Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121 (2) 179-193
  • 67 Saito Y, Sasaki M, Hanaoka S, Sugai K, Hashimoto T. A case of Noonan syndrome with cortical dysplasia. Pediatr Neurol 1997; 17 (3) 266-269
  • 68 Bennett MR, Rizvi TA, Karyala S, McKinnon RD, Ratner N. Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants. J Neurosci 2003; 23 (18) 7207-7217
  • 69 Li X, Newbern JM, Wu Y , et al. MEK is a key regulator of gliogenesis in the developing brain. Neuron 2012; 75 (6) 1035-1050
  • 70 Hegedus B, Dasgupta B, Shin JE , et al. Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 2007; 1 (4) 443-457
  • 71 Steen RG, Taylor JS, Langston JW , et al. Prospective evaluation of the brain in asymptomatic children with neurofibromatosis type 1: relationship of macrocephaly to T1 relaxation changes and structural brain abnormalities. AJNR Am J Neuroradiol 2001; 22 (5) 810-817
  • 72 Jamsheer A, Sowińska A, Trzeciak T, Jamsheer-Bratkowska M, Geppert A, Latos-Bieleńska A. Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations. J Appl Genet 2012; 53 (4) 415-422
  • 73 Theil T, Alvarez-Bolado G, Walter A, Rüther U. Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 1999; 126 (16) 3561-3571
  • 74 Wilson SL, Wilson JP, Wang C, Wang B, McConnell SK. Primary cilia and Gli3 activity regulate cerebral cortical size. Dev Neurobiol 2012; 72 (9) 1196-1212
  • 75 Fujii K, Miyashita T. Gorlin syndrome (nevoid basal cell carcinoma syndrome): update and literature review. Pediatr Int 2014; 56 (5) 667-674
  • 76 Tatton-Brown K, Rahman N. The NSD1 and EZH2 overgrowth genes, similarities and differences. Am J Med Genet C Semin Med Genet 2013; 163C (2) 86-91
  • 77 Zhang J, Ji F, Liu Y , et al. Ezh2 regulates adult hippocampal neurogenesis and memory. J Neurosci 2014; 34 (15) 5184-5199
  • 78 Visser R, Landman EB, Goeman J, Wit JM, Karperien M. Sotos syndrome is associated with deregulation of the MAPK/ERK-signaling pathway. PLoS ONE 2012; 7 (11) e49229
  • 79 Lu H, Jin W, Sun J , et al. New tumor suppressor CXXC finger protein 4 inactivates mitogen activated protein kinase signaling. FEBS Lett 2014; 588 (18) 3322-3326
  • 80 Wyllie E, Comair YG, Kotagal P, Bulacio J, Bingaman W, Ruggieri P. Seizure outcome after epilepsy surgery in children and adolescents. Ann Neurol 1998; 44 (5) 740-748
  • 81 Shahid A. Resecting the epileptogenic tuber: what happens in the long term?. Epilepsia 2013; 54 (Suppl. 09) 135-138
  • 82 Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS. A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 2011; 43 (2) 322-329
  • 83 Wiegand G, May TW, Ostertag P, Boor R, Stephani U, Franz DN. Everolimus in tuberous sclerosis patients with intractable epilepsy: a treatment option?. Eur J Paediatr Neurol 2013; 17 (6) 631-638
  • 84 Krueger DA, Wilfong AA, Holland-Bouley K , et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 2013; 74 (5) 679-687