Aktuelle Neurologie 2015; 42(07): 393-401
DOI: 10.1055/s-0035-1552630
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Epigenetik – neue Erkenntnisse zum Verständnis neurodegenerativer Erkrankungen

Epigenetic Mechanisms in Neurodegenerative Diseases
A. Fischer
1   Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE)
2   Psychiatrie und Psychotherapie, Universitätsmedizin Göttingen
,
A. Schneider
1   Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE)
2   Psychiatrie und Psychotherapie, Universitätsmedizin Göttingen
,
U. Wüllner
1   Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE)
3   Neurologie, Universität Bonn
› Author Affiliations
Further Information

Publication History

Publication Date:
14 September 2015 (online)

Zusammenfassung

Epigenetik bezeichnet die verschiedenen, über die DNA-Sequenz hinausgehenden Strukturen und Funktionen der DNA-Protein-Matrix (Chromatin), die die Genexpression regulieren. Dieses Epigenom bestimmt die unterschiedliche Entwicklung, die genetisch identische Zellen und Individuen (eineiige Zwillinge) nehmen. Epigenetische Merkmale wie z. B. die direkte biochemische Modifikationen der DNA durch Methylierung können durch Umwelteinflüsse verändert und in veränderter Form vererbt werden, ohne dass die Sequenz der DNA verändert wird. Die Analyse epigenetischer Prozesse, insbesondere der DNA-Methylierung, der Modifikationen der DNA-bindenden Histon-Proteine und der Funktionen der nicht kodierenden microRNA, eröffnet ein unerwartet komplexes Feld von Umwelt-Gen-Interaktionen, die die individuellen Ausprägungen von Krankheitsmerkmalen ebenso beeinflussen wie Wirkungen und Nebenwirkungen vieler Medikamente.

Die Erforschung des Epigenoms wird auch für die beiden häufigsten neurodegenerativen Erkrankungen, die Alzheimer’sche und Parkinson’sche Krankheit, neue diagnostische und möglicherweise auch therapeutische Perspektiven aufzeigen.

Abstract

Epigenetics describes the various structures and functions of the DNA-protein matrix (chromatin), which regulate gene expression beyond the DNA sequence. The epigenome determines the differences in the development of genetically identical cells and individuals (mono-zygotic twins). Epigenetic features such as direct biochemical modifications of DNA (methylation) are affected by environmental conditions (famine, early life stress) and are inherited in a modified form, without alteration of the DNA sequence. The analysis of epigenetic processes, in particular DNA methylation, modifications of the DNA-binding proteins, and the functions of the non-coding microRNA, opens an unexpectedly complex field of environment-gene interactions that affect the individual patterns of disease symptoms as well as effects and side effects of many drugs.

The study of the epigenome hold the promise of new diagnostic and possibly therapeutic perspectives also for the two most common neurodegenerative diseases, namely Alzheimerʼs and Parkinsonʼs disease.

 
  • Literatur

  • 1 Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9: 465-476
  • 2 Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 2014; 17: 89-96
  • 3 Siegmund KD, Connor CM, Campan M et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE 2007; 2: e895
  • 4 Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. PNAS U S A 2008; 105: 17046-17049
  • 5 Murgatroyd C, Patchev AV, Wu Y et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 2009; 12: 1559-1566
  • 6 Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. The Lancet Neurology 2009; 8: 1056-1072
  • 7 Hornstra IK, Nelson DL, Warren ST et al. High resolution methylation analysis of the FMR1 gene trinucleotide repeat region in fragile X syndrome. Hum Mol Genet 1993; 2: 1659-1665
  • 8 Bönsch D, Lenz B, Fiszer R et al. Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm 2006; 113: 1299-1304
  • 9 Kaut O, Schmitt I, Wüllner U. Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 2012; 13: 87-91
  • 10 Yu L, Chibnik LB, Srivastava GP et al. Association of Brain DNA Methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 With Pathological Diagnosis of Alzheimer Disease. JAMA Neurol 2014; Nov 3 DOI: 10.1001/jamaneurol.2014.3049.
  • 11 Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8: 112-116
  • 12 Schneider A, Mandelkow E. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics 2008; 5: 443-457.13
  • 13 Höglinger GU, Melhem NM, Dickson DW et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011; 43: 699-705
  • 14 Schmitt M, Matthies H. Biochemical studies on histones of the central nervous system. III. Incorporation of [14C]-acetate into the histones of different rat brain regions during a learning experiment. Acta Biol Med Ger 1979; 38: 683-689
  • 15 Swank MW, Sweatt JD. Increased Histone Acetyltransferase and Lysine Acetyltransferase Activity and Biphasic Activation of the ERK/RSK Cascade in Insular Cortex During Novel Taste Learning. J Neurosci 2001; 21: 3383-3391
  • 16 Alarcon JM, Malleret G, Touzani K et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004; 42: 947-959
  • 17 Fischer A, Sananbenesi F, Wang X et al. Recovery of learning & memory after neuronal loss is associated with chromatin remodeling. Nature 2007; 447: 178-182
  • 18 Francis YI, Fà M, Ashraf H et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. J Alzheimers Dis 2009; 18: 131-139
  • 19 Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A et al. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model. Neuropsychopharmacology 2009; 34: 1721-1732
  • 20 Kilgore M, Miller CA, Fass DM et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 2010; 35: 870-880
  • 21 Govindarajan N, Agis-Balboa C, Walter J et al. Sodium Butyrate Improves Memory Function in an Alzheimer’s Disease Mouse Model When Administered at an Advanced Stage of Disease Progression. J Alzheimers Dis 2011; 24: 1-11
  • 22 Fontán-Lozano A, Romero-Granados R, Troncoso J et al. Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. MolCell Neurosci 2008; 39: 193-201
  • 23 Zhang ZY, Schluesener HJ. Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J Neuropathol Exp Neurol 2013; 72: 178-185
  • 24 Fischer A. Epigenetic memory: the Lamarckian brain. EMBO J 2014; 33: 945-967
  • 25 Guan JS, Haggarty SJ, Giacometti E et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009; 459: 55-60
  • 26 Xiong Y, Zhao K, Wu J et al. HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc Natl Acad Sci U S A 2013; 110: 4604-4609
  • 27 Walkinshaw DR, Yang XJ. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol 2008; 15: 237-243
  • 28 Chatterjee S, Mizar P, Cassel R et al. A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice. J Neurosci 2013; 33: 10698-10712
  • 29 Schaefer A, Sampath SC, Intrator A et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 2009; 64: 678-691
  • 30 Polymeropoulos MH, Lavedan C, Leroy E et al. a-synuclein gene identified in families with Parkinson's disease. Science 1997; 276: 2045-2047
  • 31 Spillantini MG, Schmidt ML, Lee VM et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-840
  • 32 Abeliovich A, Schmitz Y, Farinas I et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000; 25: 239-252
  • 33 Nemani VM, Lu W, Berge V et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 2010; 65: 66-79
  • 34 Singleton AB, Farrer M, Johnson J et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003; 302: 841
  • 35 Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007; 447: 433-440
  • 36 Jowead A, Schmitt I, Kaut O et al. Methylation regulates expression of alpha-synuclein and is decreased in Parkinson’s disease patients’ brains. J Neurosci 2010; 30: 6355-6359
  • 37 Nicholas AP, Lubin FD, Hallett PJ et al. Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 2008; 106: 486-494
  • 38 Chen L, Feany MB. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 2005; 8: 657-663
  • 39 Van den Hove DL, Kompotis K, Lardenoije R et al. Epigenetically regulated microRNAs in Alzheimer’s disease. Neurobiol Aging 2014; 35: 731-745
  • 40 Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry 2014; 19: 848-852
  • 41 Gao J, Wang WY, Mao YW et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466: 1105-1109
  • 42 Abe M, Bonini NM. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 2013; 23: 30-36
  • 43 Nunez-Iglesias J, Liu CC, Morgan TE et al. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One 2010; 5: e8898
  • 44 Wang WX, Huang Q, Hu Y et al. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 2011; 121: 193-205
  • 45 Donev R, Newall A, Thome J et al. A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry 2007; 12: 681-690
  • 46 Smith P, Al Hashimi A, Girard J et al. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 2011; 116: 240-247
  • 47 Rockenstein EM, McConlogue L, Tan H et al. Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. Biol Chem 1995; 270: 28257-28267
  • 48 Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2012; 2: a006247
  • 49 Dickson JR, Kruse C, Montagna DR et al. Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 2013; 127: 739-749
  • 50 Zovoilis A, Agbemenyah HY, Agis-Balboa RC et al. microRNA-34c is a novel target to treat dementias. EMBO J 2011; 30: 4299-4308
  • 51 Müller M, Kuiperij HB, Claassen JA et al. MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging 2014; 35: 152-158
  • 52 Michán S, Li Y, Chou MM et al. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 2010; 30: 9695-9707
  • 53 Miñones-Moyano E, Porta S, Escaramís G et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20: 3067-3078
  • 54 Müller-Rischart AK, Pilsl A, Beaudette P et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell 2013; 49: 908-921
  • 55 Junn E, Lee KW, Jeong BS et al. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 2009; 106: 13052-13057
  • 56 Ito T, Umehara T, Sasaki K et al. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem Biol 2011; 18: 495-507
  • 57 Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 2013; 6: 39
  • 58 Fischer A, Sananbenesi F, Mungenast A et al. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 2010; 31: 605-617
  • 59 Zhang ZY, Schluesener HJ. Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J Neuropathol Exp Neurol 2013; 72: 178-185
  • 60 Cao P, Liang Y, Gao X et al. Administration of MS-275 improves cognitive performance and reduces cell death following traumatic brain injury in rats. CNS Neurosci Ther 2013; 19: 337-345
  • 61 Agis-Balboa RC, Pavelka Z, Kerimoglu C et al. Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimers Dis 2013; 33: 35-44
  • 62 Göttlicher M, Minucci S, Zhu P et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969-6978
  • 63 Kilgore M, Miller CA, Fass DM et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2010; 35: 870-880
  • 64 Tariot PN, Schneider LS, Cummings J et al. Alzheimer’s Disease Cooperative Study Group. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch Gen Psychiatry 2011; 68: 853-861
  • 65 Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438: 685-689
  • 66 Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K et al. Generation of miRNA sponge constructs. Nature Methods 2012; 58: 113-117
  • 67 Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009; 8: 129-138
  • 68 Alvarez-Erviti L, Seow Y, Yin H et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29: 341-345