Int J Sports Med 2015; 36(14): 1142-1148
DOI: 10.1055/s-0035-1554643
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Estimation of the Maximal Lactate Steady State in Junior Soccer Players

I. Llodio
1   Studies, Research and Sports Medicine Centre, Government of Navarre, Pamplona, Spain
,
I. Garcia-Tabar
1   Studies, Research and Sports Medicine Centre, Government of Navarre, Pamplona, Spain
,
L. Sánchez-Medina
1   Studies, Research and Sports Medicine Centre, Government of Navarre, Pamplona, Spain
,
J. Ibáñez
1   Studies, Research and Sports Medicine Centre, Government of Navarre, Pamplona, Spain
,
E. M. Gorostiaga
› Author Affiliations
Further Information

Publication History



accepted after revision 11 May 2015

Publication Date:
02 September 2015 (online)

Abstract

This study aimed to predict the velocity corresponding to the maximal lactate steady state (MLSSV) from non-invasive variables obtained during an incremental maximal running test (University of Montreal Track Test, UMTT) and to determine whether a single constant velocity test (CVT), performed several days after the UMTT, could estimate the MLSSV. During a period of 3 weeks, 20 male junior soccer players performed: 1) a UMTT, and 2) several 20-min CVTs to determine MLSSV to a precision of 0.35 km·h−1. Maximal aerobic velocity (MAV) and velocity at 80% of maximum heart rate (V80%HRmax) were strong predictors of MLSSV. A regression equation was obtained: MLSSV=(1.106·MAV) – (0.309·V80%HRmax) – 3.024; R2=0.60. Running velocity during CVT (VCVT) and blood lactate at 10 (La10) and 20 (La20) minutes further improved the MLSSV prediction: MLSSV=VCVT+0.26 – (0.812·ΔLa20–10); R2=0.66. MLSSV can be estimated from MAV and V80%HRmax during a single incremental maximal running test among a homogeneous group of soccer players. This estimation can be improved by performing an additional CVT. In terms of accuracy, simplicity and cost-effectiveness, the reported regression equations can be used for the assessment and training prescription of endurance in team sport players.

 
  • References

  • 1 Apor P. Successful formulae for fitness training. In: Reilly T, Lees A, Davis K, Murphy WJ. (eds.) Science and Football. London: University Press; 1988: 95-107
  • 2 Atkinson G, Davison RC, Nevill AM. Performance characteristics of gas analysis systems: what we know and what we need to know. Int J Sports Med 2005; 26: 2-10
  • 3 Beneke R, Hutler M, Leithauser RM. Maximal lactate-steady-state independent of performance. Med Sci Sports Exerc 2000; 32: 1135-1139
  • 4 Beneke R, Leithauser RM, Hutler M. Dependence of the maximal lactate steady state on the motor pattern of exercise. Br J Sports Med 2001; 35: 192-196
  • 5 Beneke R, Schwarz V, Leithäuser R, Hütler M, von Duvillard SP. Maximal lactate steady state in children. Pediatr Exerc Sci 1996; 8: 328-336
  • 6 Beneke R, von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc 1996; 28: 241-246
  • 7 Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 1995; 27: 863-867
  • 8 Beneke R. Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol 2003; 89: 95-99
  • 9 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310
  • 10 Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol 1983; 50: 273-282
  • 11 Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 2003; 89: 281-288
  • 12 Dittrich N, de Lucas RD, Beneke R, Guglielmo LG. Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise. Int J Sports Physiol Perform 2014; 9: 772-776
  • 13 Fontana P, Boutellier U, Knopfli-Lenzin C. Time to exhaustion at maximal lactate steady state is similar for cycling and running in moderately trained subjects. Eur J Appl Physiol 2009; 107: 187-192
  • 14 Gorostiaga EM, Granados C, Ibáñez J, Izquierdo M. Differences in physical fitness and throwing velocity among elite and amateur male handball players. Int J Sports Med 2005; 26: 225-232
  • 15 Grossl T, De Lucas RD, De Souza KM, Antonacci Guglielmo LG. Maximal lactate steady-state and anaerobic thresholds from different methods in cyclists. Eur J Sport Sci 2011; 12: 161-167
  • 16 Grubert Campbell C, Henrique Sousa W, Ferreira J, Assenço F, Simões H. Prediction of maximal lactate steady state velocity based on performance in a 5km cycling test. Rev Bras Cineantropom Desempenho Hum 2007; 9: 223-230
  • 17 Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 Update. Int J Sports Med 2013; 34: 1025-1028
  • 18 Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med 1985; 6: 117-130
  • 19 Helgerud J, Engen LC, Wisloff U, Hoff J. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc 2001; 33: 1925-1931
  • 20 Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr 1978; 40: 497-504
  • 21 Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state. Med Sci Sports Exerc 1998; 30: 1304-1313
  • 22 Kilding AE, Jones AM. Validity of a single-visit protocol to estimate the maximum lactate steady state. Med Sci Sports Exerc 2005; 37: 1734-1740
  • 23 Leger L, Boucher R. An indirect continuous running multistage field test: the Université de Montreal track test. Can J Appl Sport Sci 1980; 5: 77-84
  • 24 Leti T, Mendelson M, Laplaud D, Flore P. Prediction of maximal lactate steady state in runners with an incremental test on the field. J Sports Sci 2012; 30: 609-616
  • 25 McMillan K, Helgerud J, Grant SJ, Newell J, Wilson J, Macdonald R, Hoff J. Lactate threshold responses to a season of professional British youth soccer. Br J Sports Med 2005; 39: 432-436
  • 26 Philp A, MacDonald AL, Carter H, Watt PW, Pringle JS. Maximal lactate steady state as a training stimulus. Int J Sports Med 2008; 29: 475-479
  • 27 Rampinini E, Coutts AJ, Castagna C, Sassi R, Impellizzeri FM. Variation in top level soccer match performance. Int J Sports Med 2007; 28: 1018-1024
  • 28 Rong Y. Statistical methods and pitfalls in environmental data analysis. Environ Forensics 2000; 1: 213-220
  • 29 Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol 1982; 49: 45-57
  • 30 Snyder AC, Woulfe T, Welsh R, Foster C. A simplified approach to estimating the maximal lactate steady state. Int J Sports Med 1994; 15: 27-31
  • 31 Sotero RC, Pardono E, Campbell CS, Simoes HG. Indirect assessment of lactate minimum and maximal blood lactate steady-state intensity for physically active individuals. J Strength Cond Res 2009; 23: 847-853
  • 32 Sotero RC, Pardono E, Landwehr R, Campbell CS, Simoes HG. Blood glucose minimum predicts maximal lactate steady state on running. Int J Sports Med 2009; 30: 643-646
  • 33 Swensen TC, Harnish CR, Beitman L, Keller BA. Noninvasive estimation of the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc 1999; 31: 742-746
  • 34 Tolfrey K, Hansen SA, Dutton K, McKee T, Jones AM. Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill. Appl Physiol Nutr Metab 2009; 34: 763-772
  • 35 Van Schuylenbergh R, Vanden EB, Hespel P. Effect of exercise-induced dehydration on lactate parameters during incremental exercise. Int J Sports Med 2005; 26: 854-858
  • 36 Van SR, Eynde BV, Hespel P. Prediction of sprint triathlon performance from laboratory tests. Eur J Appl Physiol 2004; 91: 94-99
  • 37 Vobejda C, Fromme K, Samson W, Zimmermann E. Maximal constant heart rate. A heart rate based method to estimate maximal lactate steady state in running. Int J Sports Med 2006; 27: 368-372
  • 38 Wisløff U, Helgerud J, Hoff J. Strength and endurance of elite soccer players. Med Sci Sports Exerc 1998; 30: 462-467