RSS-Feed abonnieren
DOI: 10.1055/s-0035-1556591
The Role of Blood-Borne Microparticles in Inflammation and Hemostasis
Publikationsverlauf
Publikationsdatum:
15. August 2015 (online)
Abstract
Inflammation has a pivotal role in cardiovascular disease because it contributes to the progression of atherosclerosis, a chronic inflammatory disease of the vessel wall. Microparticles (MPs) have recently emerged as both surrogate markers for different cardiovascular conditions (i.e., biomarkers of vascular inflammation and coagulation) and paracrine biological shuttle modules with influence in target cells. MPs are vesicles that bud off from cells, lack a nucleus, contain a membrane skeleton, and are defined by their size and expression on their surface of antigens specific of parental cells. Interestingly, not only inflammation is one of the main stimuli causing MP release but also MPs, in its turn, can induce, regulate, and even in specific cases reduce inflammation. The present review aims to summarize and update the role of circulating MPs in inflammation and hemostasis with special emphasis on their novel associations and functions. Besides their role as biomarkers of atherosclerotic inflammation, blood-borne MPs possess mechanisms to alter vascular cell milieu, to disseminate proinflammatory mediators, and to spread the inflammatory cascade reaction, causing a chronic inflammation of the vascular wall and aggravating the atherothrombotic process.
-
References
- 1 Jy W, Horstman LL, Jimenez JJ , et al. Measuring circulating cell-derived microparticles. J Thromb Haemost 2004; 2 (10) 1842-1851
- 2 Doeuvre L, Plawinski L, Toti F, Anglés-Cano E. Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 2009; 110 (2) 457-468
- 3 Robert S, Poncelet P, Lacroix R , et al. Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies?. J Thromb Haemost 2009; 7 (1) 190-197
- 4 Toth B, Nikolajek K, Rank A , et al. Gender-specific and menstrual cycle dependent differences in circulating microparticles. Platelets 2007; 18 (7) 515-521
- 5 van der Zee PM, Biró E, Ko Y , et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 2006; 52 (4) 657-664
- 6 Bretelle F, Sabatier F, Desprez D , et al. Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction. Thromb Haemost 2003; 89 (3) 486-492
- 7 Chaar V, Romana M, Tripette J , et al. Effect of strenuous physical exercise on circulating cell-derived microparticles. Clin Hemorheol Microcirc 2011; 47 (1) 15-25
- 8 Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M. Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative stress and cellular microparticles in healthy men. J Thromb Haemost 2006; 4 (5) 1003-1010
- 9 Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 2009; 101 (3) 439-451
- 10 Berenson GS, Srinivasan SR, Bao W, Newman III WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 1998; 338 (23) 1650-1656
- 11 Berckmans RJ, Nieuwland R, Böing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 2001; 85 (4) 639-646
- 12 Koga H, Sugiyama S, Kugiyama K , et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 2005; 45 (10) 1622-1630
- 13 Preston RA, Jy W, Jimenez JJ , et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003; 41 (2) 211-217
- 14 Ueba T, Nomura S, Inami N , et al. Plasma level of platelet-derived microparticles is associated with coronary heart disease risk score in healthy men. J Atheroscler Thromb 2010; 17 (4) 342-349
- 15 Bernal-Mizrachi L, Jy W, Fierro C , et al. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol 2004; 97 (3) 439-446
- 16 Bernal-Mizrachi L, Jy W, Jimenez JJ , et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 2003; 145 (6) 962-970
- 17 Werner N, Wassmann S, Ahlers P, Kosiol S, Nickenig G. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2006; 26 (1) 112-116
- 18 Perez-Pujol S, Marker PH, Key NS. Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer. Cytometry A 2007; 71 (1) 38-45
- 19 Morel O, Morel N, Hugel B , et al. The significance of circulating microparticles in physiology, inflammatory and thrombotic diseases [in French]. Rev Med Interne 2005; 26 (10) 791-801
- 20 Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94 (11) 3791-3799
- 21 Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 2006; 20 (1) 1-26
- 22 Johnstone RM. Exosomes biological significance: a concise review. Blood Cells Mol Dis 2006; 36 (2) 315-321
- 23 Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9 (8) 581-593
- 24 Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 2003; 109 (4) 175-180
- 25 Aatonen M, Grönholm M, Siljander PR. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost 2012; 38 (1) 102-113
- 26 Abrahams VM, Straszewski SL, Kamsteeg M , et al. Epithelial ovarian cancer cells secrete functional Fas ligand. Cancer Res 2003; 63 (17) 5573-5581
- 27 Miyazaki Y, Nomura S, Miyake T , et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 1996; 88 (9) 3456-3464
- 28 Schoenwaelder SM, Yuan Y, Josefsson EC , et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 2009; 114 (3) 663-666
- 29 Zwaal RF, Comfurius P, Bevers EM. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 2005; 62 (9) 971-988
- 30 Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19 (2) 43-51
- 31 Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Mol Dis 2006; 36 (2) 182-187
- 32 Rand ML, Wang H, Bang KW, Packham MA, Freedman J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb Haemost 2006; 4 (7) 1621-1623
- 33 Rank A, Nieuwland R, Crispin A , et al. Clearance of platelet microparticles in vivo. Platelets 2011; 22 (2) 111-116
- 34 Abdel-Monem H, Dasgupta SK, Le A, Prakasam A, Thiagarajan P. Phagocytosis of platelet microvesicles and beta2- glycoprotein I. Thromb Haemost 2010; 104 (2) 335-341
- 35 Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ 2001; 8 (6) 551-563
- 36 Wu Y, Tibrewal N, Birge RB. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 2006; 16 (4) 189-197
- 37 Distler JH, Huber LC, Hueber AJ , et al. The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis 2005; 10 (4) 731-741
- 38 Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 2007; 7 (12) 964-974
- 39 Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005; 106 (5) 1604-1611
- 40 Dasgupta SK, Abdel-Monem H, Niravath P , et al. Lactadherin and clearance of platelet-derived microvesicles. Blood 2009; 113 (6) 1332-1339
- 41 Fourcade O, Simon MF, Viodé C , et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995; 80 (6) 919-927
- 42 Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 2012; 125 (13) 1664-1672
- 43 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9 (6) 654-659
- 44 Shai E, Rosa I, Parguiña AF, Motahedeh S, Varon D, García Á. Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. J Proteomics 2012; 76 (Spec No) 287-296
- 45 Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW. Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost 2009; 102 (4) 711-718
- 46 Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A. Cellular prion protein is released on exosomes from activated platelets. Blood 2006; 107 (10) 3907-3911
- 47 Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br J Haematol 1971; 21 (1) 53-69
- 48 Abid Hussein MN, Meesters EW, Osmanovic N, Romijn FP, Nieuwland R, Sturk A. Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo. J Thromb Haemost 2003; 1 (11) 2434-2443
- 49 Huang Y, Zhang JL, Yu XL, Xu TS, Wang ZB, Cheng XC. Molecular functions of small regulatory noncoding RNA. Biochemistry (Mosc) 2013; 78 (3) 221-230
- 50 Mitchell PS, Parkin RK, Kroh EM , et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105 (30) 10513-10518
- 51 Pigati L, Yaddanapudi SC, Iyengar R , et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE 2010; 5 (10) e13515
- 52 Weerheim AM, Kolb AM, Sturk A, Nieuwland R. Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal Biochem 2002; 302 (2) 191-198
- 53 Huber J, Vales A, Mitulovic G , et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 2002; 22 (1) 101-107
- 54 Sinauridze EI, Kireev DA, Popenko NY , et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (3) 425-434
- 55 Connor DE, Exner T, Ma DD, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 2010; 103 (5) 1044-1052
- 56 Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost 2011; 105 (3) 396-408
- 57 Nieuwland R, Berckmans RJ, McGregor S , et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000; 95 (3) 930-935
- 58 Keuren JF, Magdeleyns EJ, Bennaghmouch A, Bevers EM, Curvers J, Lindhout T. Microparticles adhere to collagen type I, fibrinogen, von Willebrand factor and surface immobilised platelets at physiological shear rates. Br J Haematol 2007; 138 (4) 527-533
- 59 Mrvar-Brecko A, Sustar V, Jansa V , et al. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope. Blood Cells Mol Dis 2010; 44 (4) 307-312
- 60 Combes V, Simon AC, Grau GE , et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 1999; 104 (1) 93-102
- 61 Rubin O, Crettaz D, Tissot JD, Lion N. Pre-analytical and methodological challenges in red blood cell microparticle proteomics. Talanta 2010; 82 (1) 1-8
- 62 van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost 2013; 11 (Suppl. 01) 36-45
- 63 Donadee C, Raat NJ, Kanias T , et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 2011; 124 (4) 465-476
- 64 Lozito TP, Tuan RS. Endothelial cell microparticles act as centers of matrix metalloproteinsase-2 (MMP-2) activation and vascular matrix remodeling. J Cell Physiol 2012; 227 (2) 534-549
- 65 Terrisse AD, Puech N, Allart S , et al. Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J Thromb Haemost 2010; 8 (12) 2810-2819
- 66 Joly E, Hudrisier D. What is trogocytosis and what is its purpose?. Nat Immunol 2003; 4 (9) 815
- 67 Faille D, El-Assaad F, Mitchell AJ , et al. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 2012; 16 (8) 1731-1738
- 68 Rozmyslowicz T, Majka M, Kijowski J , et al. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 2003; 17 (1) 33-42
- 69 Escolar G, Lopez-Vilchez I, Diaz-Ricart M, White JG, Galan AM. Internalization of tissue factor by platelets. Thromb Res 2008; 122 (Suppl. 01) S37-S41
- 70 Morel O, Toti F, Jesel L, Freyssinet JM. Mechanisms of microparticle generation: on the trail of the mitochondrion!. Semin Thromb Hemost 2010; 36 (8) 833-844
- 71 Morel O, Toti F, Hugel B , et al. Procoagulant microparticles: disrupting the vascular homeostasis equation?. Arterioscler Thromb Vasc Biol 2006; 26 (12) 2594-2604
- 72 Sims PJ, Faioni EM, Wiedmer T, Shattil SJ. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 1988; 263 (34) 18205-18212
- 73 Tan KT, Lip GY. The potential role of platelet microparticles in atherosclerosis. Thromb Haemost 2005; 94 (3) 488-492
- 74 Key NS. Analysis of tissue factor positive microparticles. Thromb Res 2010; 125 (Suppl. 01) S42-S45
- 75 Owens III AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 2011; 108 (10) 1284-1297
- 76 Steppich B, Mattisek C, Sobczyk D, Kastrati A, Schömig A, Ott I. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb Haemost 2005; 93 (1) 35-39
- 77 Pérez-Casal M, Downey C, Cutillas-Moreno B, Zuzel M, Fukudome K, Toh CH. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica 2009; 94 (3) 387-394
- 78 Pérez-Casal M, Downey C, Fukudome K, Marx G, Toh CH. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood 2005; 105 (4) 1515-1522
- 79 Tans G, Rosing J, Thomassen MC, Heeb MJ, Zwaal RF, Griffin JH. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991; 77 (12) 2641-2648
- 80 Satta N, Freyssinet JM, Toti F. The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide. Br J Haematol 1997; 96 (3) 534-542
- 81 Lacroix R, Dignat-George F. Microparticles: new protagonists in pericellular and intravascular proteolysis. Semin Thromb Hemost 2013; 39 (1) 33-39
- 82 Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005; 25 (7) 1512-1518
- 83 Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol 2004; 286 (5) H1910-H1915
- 84 Densmore JC, Signorino PR, Ou J , et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 2006; 26 (5) 464-471
- 85 Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH , et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 2008; 173 (4) 1210-1219
- 86 Boulanger CM, Scoazec A, Ebrahimian T , et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001; 104 (22) 2649-2652
- 87 Huber LC, Jüngel A, Distler JH , et al. The role of membrane lipids in the induction of macrophage apoptosis by microparticles. Apoptosis 2007; 12 (2) 363-374
- 88 Abid Hussein MN, Böing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost 2007; 98 (5) 1096-1107
- 89 Abid Hussein MN, Nieuwland R, Hau CM, Evers LM, Meesters EW, Sturk A. Cell-derived microparticles contain caspase 3 in vitro and in vivo. J Thromb Haemost 2005; 3 (5) 888-896
- 90 Böing AN, Hau CM, Sturk A, Nieuwland R. Platelet microparticles contain active caspase 3. Platelets 2008; 19 (2) 96-103
- 91 Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS ONE 2009; 4 (9) e7140
- 92 Huang PH, Huang SS, Chen YH , et al. Increased circulating CD31+/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J Hypertens 2010; 28 (8) 1655-1665
- 93 Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 2005; 67 (1) 30-38
- 94 Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004; 124 (3) 376-384
- 95 Mause SF, Ritzel E, Liehn EA , et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 2010; 122 (5) 495-506
- 96 Soleti R, Benameur T, Porro C, Panaro MA, Andriantsitohaina R, Martínez MC. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis 2009; 30 (4) 580-588
- 97 Leroyer AS, Rautou PE, Silvestre JS , et al. CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol 2008; 52 (16) 1302-1311
- 98 Arderiu G, Pena E, Badimon L. Angiogenic microvascular endothelial cells release microparticles rich in tissue factor that promotes postischemic collateral vessel formation. Arterioscler Thromb Vasc Biol 2015; 35 (2) 348-357
- 99 Yang C, Mwaikambo BR, Zhu T , et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol 2008; 294 (2) R467-R476
- 100 Ou ZJ, Chang FJ, Luo D , et al. Endothelium-derived microparticles inhibit angiogenesis in the heart and enhance the inhibitory effects of hypercholesterolemia on angiogenesis. Am J Physiol Endocrinol Metab 2011; 300 (4) E661-E668
- 101 Leroyer AS, Isobe H, Lesèche G , et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 2007; 49 (7) 772-777
- 102 Sambola A, Osende J, Hathcock J , et al. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation 2003; 107 (7) 973-977
- 103 Hugel B, Socié G, Vu T , et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood 1999; 93 (10) 3451-3456
- 104 Lopez-Vilchez I, Escolar G, Diaz-Ricart M, Fuste B, Galan AM, White JG. Tissue factor-enriched vesicles are taken up by platelets and induce platelet aggregation in the presence of factor VIIa. Thromb Haemost 2007; 97 (2) 202-211
- 105 Falati S, Liu Q, Gross P , et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 2003; 197 (11) 1585-1598
- 106 Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002; 8 (10) 1175-1181
- 107 Gross PL, Furie BC, Merrill-Skoloff G, Chou J, Furie B. Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. J Leukoc Biol 2005; 78 (6) 1318-1326
- 108 Zwicker JI, Trenor III CC, Furie BC, Furie B. Tissue factor-bearing microparticles and thrombus formation. Arterioscler Thromb Vasc Biol 2011; 31 (4) 728-733
- 109 Fuster V, Badimon L, Cohen M, Ambrose JA, Badimon JJ, Chesebro J. Insights into the pathogenesis of acute ischemic syndromes. Circulation 1988; 77 (6) 1213-1220
- 110 Lopez-Vilchez I, Diaz-Ricart M, White JG, Escolar G, Galan AM. Serotonin enhances platelet procoagulant properties and their activation induced during platelet tissue factor uptake. Cardiovasc Res 2009; 84 (2) 309-316
- 111 Merten M, Pakala R, Thiagarajan P, Benedict CR. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation 1999; 99 (19) 2577-2582
- 112 Siljander P, Carpen O, Lassila R. Platelet-derived microparticles associate with fibrin during thrombosis. Blood 1996; 87 (11) 4651-4663
- 113 Raturi A, Miersch S, Hudson JW, Mutus B. Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin. Biochim Biophys Acta 2008; 1778 (12) 2790-2796
- 114 Suades R, Padró T, Vilahur G, Badimon L. Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thromb Haemost 2012; 108 (6) 1208-1219
- 115 Rajavashisth T, Qiao JH, Tripathi S , et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest 1998; 101 (12) 2702-2710
- 116 Ferrante G, Nakano M, Prati F , et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation 2010; 122 (24) 2505-2513
- 117 Hoyer FF, Giesen MK, Nunes França C, Lütjohann D, Nickenig G, Werner N. Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. J Cell Mol Med 2012; 16 (11) 2777-2788
- 118 Wang JG, Williams JC, Davis BK , et al. Monocytic microparticles activate endothelial cells in an IL-1β-dependent manner. Blood 2011; 118 (8) 2366-2374
- 119 Sun J, Sukhova GK, Wolters PJ , et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 2007; 13 (6) 719-724
- 120 Pitanga TN, de Aragão França L, Rocha VC , et al. Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells. BMC Cell Biol 2014; 15: 21
- 121 Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102 (24) 2919-2922
- 122 Martin S, Tesse A, Hugel B , et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 2004; 109 (13) 1653-1659
- 123 Mostefai HA, Agouni A, Carusio N , et al. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol 2008; 180 (7) 5028-5035
- 124 Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer JM, Burger D. Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol 2008; 83 (4) 921-927
- 125 Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002; 109 (6) 745-753
- 126 Diehl P, Aleker M, Helbing T , et al. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis 2011; 31 (2) 173-179
- 127 Amabile N, Guérin AP, Leroyer A , et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 2005; 16 (11) 3381-3388
- 128 Esposito K, Ciotola M, Giugliano D. Pioglitazone reduces endothelial microparticles in the metabolic syndrome. Arterioscler Thromb Vasc Biol 2006; 26 (8) 1926
- 129 Jy W, Minagar A, Jimenez JJ , et al. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis. Front Biosci 2004; 9: 3137-3144
- 130 Burger D, Montezano AC, Nishigaki N, He Y, Carter A, Touyz RM. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 2011; 31 (8) 1898-1907
- 131 Altieri DC. Regulation of leukocyte-endothelium interaction by fibrinogen. Thromb Haemost 1999; 82 (2) 781-786
- 132 Mesri M, Altieri DC. Endothelial cell activation by leukocyte microparticles. J Immunol 1998; 161 (8) 4382-4387
- 133 Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem 1999; 274 (33) 23111-23118
- 134 Barry OP, Pratico D, Lawson JA, FitzGerald GA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 1997; 99 (9) 2118-2127
- 135 Tesse A, Martínez MC, Hugel B , et al. Upregulation of proinflammatory proteins through NF-kappaB pathway by shed membrane microparticles results in vascular hyporeactivity. Arterioscler Thromb Vasc Biol 2005; 25 (12) 2522-2527
- 136 Suades R, Padro T, Alonso R , et al. Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thromb Haemost 2014; 111 (1) 111-121
- 137 Ridker PM, Danielson E, Fonseca FA , et al; JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359 (21) 2195-2207
- 138 Chen K, Li W, Major J, Rahaman SO, Febbraio M, Silverstein RL. Vav guanine nucleotide exchange factors link hyperlipidemia and a prothrombotic state. Blood 2011; 117 (21) 5744-5750
- 139 Boilard E, Nigrovic PA, Larabee K , et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327 (5965) 580-583
- 140 Barry OP, Praticò D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 1998; 102 (1) 136-144
- 141 Postea O, Vasina EM, Cauwenberghs S , et al. Contribution of platelet CX(3)CR1 to platelet-monocyte complex formation and vascular recruitment during hyperlipidemia. Arterioscler Thromb Vasc Biol 2012; 32 (5) 1186-1193
- 142 Montoro-García S, Shantsila E, Hernández-Romero D , et al. Small-size platelet microparticles trigger platelet and monocyte functionality and modulate thrombogenesis via P-selectin. Br J Haematol 2014; 166 (4) 571-580
- 143 Vasina EM, Cauwenberghs S, Feijge MA, Heemskerk JW, Weber C, Koenen RR. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis 2011; 2: e211
- 144 Sadallah S, Amicarella F, Eken C, Iezzi G, Schifferli JA. Ectosomes released by platelets induce differentiation of CD4+T cells into T regulatory cells. Thromb Haemost 2014; 112 (6) 1219-1229
- 145 Weber A, Köppen HO, Schrör K. Platelet-derived microparticles stimulate coronary artery smooth muscle cell mitogenesis by a PDGF-independent mechanism. Thromb Res 2000; 98 (5) 461-466
- 146 Priou P, Gagnadoux F, Tesse A , et al. Endothelial dysfunction and circulating microparticles from patients with obstructive sleep apnea. Am J Pathol 2010; 177 (2) 974-983
- 147 Meziani F, Tesse A, David E , et al. Shed membrane particles from preeclamptic women generate vascular wall inflammation and blunt vascular contractility. Am J Pathol 2006; 169 (4) 1473-1483
- 148 Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 1989; 135 (1) 169-175
- 149 Sarlon-Bartoli G, Bennis Y, Lacroix R , et al. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol 2013; 62 (16) 1436-1441
- 150 Rautou PE, Leroyer AS, Ramkhelawon B , et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 2011; 108 (3) 335-343
- 151 Ardoin SP, Shanahan JC, Pisetsky DS. The role of microparticles in inflammation and thrombosis. Scand J Immunol 2007; 66 (2-3) 159-165
- 152 Mallat Z, Hugel B, Ohan J, Lesèche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 1999; 99 (3) 348-353
- 153 Radecke CE, Warrick AE, Singh GD, Rogers JH, Simon SI, Armstrong EJ. Coronary artery endothelial cells and microparticles increase expression of VCAM-1 in myocardial infarction. Thromb Haemost 2015; 113 (3) 605-616
- 154 Santos-Gallego CG, Picatoste B, Badimón JJ. Pathophysiology of acute coronary syndrome. Curr Atheroscler Rep 2014; 16 (4) 401
- 155 Forlow SB, McEver RP, Nollert MU. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 2000; 95 (4) 1317-1323
- 156 Pluskota E, Woody NM, Szpak D , et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 2008; 112 (6) 2327-2335
- 157 Aras O, Shet A, Bach RR , et al. Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 2004; 103 (12) 4545-4553
- 158 Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol 2011; 186 (11) 6543-6552
- 159 Nomura S, Omoto S, Yokoi T , et al. Effects of miglitol in platelet-derived microparticle, adiponectin, and selectin level in patients with type 2 diabetes mellitus. Int J Gen Med 2011; 4: 539-545
- 160 Nomura S, Shouzu A, Omoto S , et al. Effect of cilostazol on soluble adhesion molecules and platelet-derived microparticles in patients with diabetes. Thromb Haemost 1998; 80 (3) 388-392
- 161 Mobarrez F, He S, Bröijersen A , et al. Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPIIIa on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb Haemost 2011; 106 (2) 344-352
- 162 Murakami T, Horigome H, Tanaka K , et al. Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb Res 2007; 119 (1) 45-53
- 163 Morel O, Hugel B, Jesel L , et al. Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists. J Thromb Haemost 2004; 2 (7) 1118-1126
- 164 Bulut D, Becker V, Mügge A. Acetylsalicylate reduces endothelial and platelet-derived microparticles in patients with coronary artery disease. Can J Physiol Pharmacol 2011; 89 (4) 239-244
- 165 Judge HM, Buckland RJ, Sugidachi A, Jakubowski JA, Storey RF. Relationship between degree of P2Y12 receptor blockade and inhibition of P2Y12-mediated platelet function. Thromb Haemost 2010; 103 (6) 1210-1217
- 166 Shouzu A, Nomura S, Omoto S, Hayakawa T, Nishikawa M, Iwasaka T. Effect of ticlopidine on monocyte-derived microparticles and activated platelet markers in diabetes mellitus. Clin Appl Thromb Hemost 2004; 10 (2) 167-173
- 167 Labiós M, Martínez M, Gabriel F, Guiral V, Munoz A, Aznar J. Effect of eprosartan on cytoplasmic free calcium mobilization, platelet activation, and microparticle formation in hypertension. Am J Hypertens 2004; 17 (9) 757-763
- 168 Nomura S, Inami N, Kimura Y , et al. Effect of nifedipine on adiponectin in hypertensive patients with type 2 diabetes mellitus. J Hum Hypertens 2007; 21 (1) 38-44
- 169 Morel O, Jesel L, Hugel B , et al. Protective effects of vitamin C on endothelium damage and platelet activation during myocardial infarction in patients with sustained generation of circulating microparticles. J Thromb Haemost 2003; 1 (1) 171-177
- 170 Nébor D, Romana M, Santiago R , et al. Fetal hemoglobin and hydroxycarbamide moduate both plasma concentration and cellular origin of circulating microparticles in sickle cell anemia children. Haematologica 2013; 98 (6) 862-867
- 171 Weitz IC, Razavi P, Rochanda L , et al. Eculizumab therapy results in rapid and sustained decreases in markers of thrombin generation and inflammation in patients with PNH independent of its effects on hemolysis and microparticle formation. Thromb Res 2012; 130 (3) 361-368
- 172 Diamant M, Tushuizen ME, Abid-Hussein MN , et al. Simvastatin-induced endothelial cell detachment and microparticle release are prenylation dependent. Thromb Haemost 2008; 100 (3) 489-497
- 173 Mobarrez F, Egberg N, Antovic J, Bröijersen A, Jörneskog G, Wallén H. Release of endothelial microparticles in vivo during atorvastatin treatment; a randomized double-blind placebo-controlled study. Thromb Res 2012; 129 (1) 95-97
- 174 Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T. Effects of losartan and simvastatin on monocyte-derived microparticles in hypertensive patients with and without type 2 diabetes mellitus. Clin Appl Thromb Hemost 2004; 10 (2) 133-141
- 175 Sommeijer DW, Joop K, Leyte A, Reitsma PH, ten Cate H. Pravastatin reduces fibrinogen receptor gpIIIa on platelet-derived microparticles in patients with type 2 diabetes. J Thromb Haemost 2005; 3 (6) 1168-1171
- 176 Tramontano AF, O'Leary J, Black AD, Muniyappa R, Cutaia MV, El-Sherif N. Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho-kinase pathway. Biochem Biophys Res Commun 2004; 320 (1) 34-38
- 177 Suades R, Padró T, Alonso R, Mata P, Badimon L. Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thromb Haemost 2013; 110 (2) 366-377
- 178 Lins LC, França CN, Fonseca FA , et al. Effects of ezetimibe on endothelial progenitor cells and microparticles in high-risk patients. Cell Biochem Biophys 2014; 70 (1) 687-696
- 179 Ferreira CE, França CN, Izar MC, Camargo LM, Roman RM, Fonseca FA. High-intensity statin monotherapy versus moderate-intensity statin plus ezetimibe therapy: effects on vascular biomarkers. Int J Cardiol 2015; 180: 78-79
- 180 van Dommelen SM, Vader P, Lakhal S , et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 2012; 161 (2) 635-644
- 181 Getts DR, Terry RL, Getts MT , et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 2014; 6 (219) 219ra7
- 182 Koga H, Sugiyama S, Kugiyama K , et al. Elevated levels of remnant lipoproteins are associated with plasma platelet microparticles in patients with type-2 diabetes mellitus without obstructive coronary artery disease. Eur Heart J 2006; 27 (7) 817-823
- 183 Goichot B, Grunebaum L, Desprez D , et al. Circulating procoagulant microparticles in obesity. Diabetes Metab 2006; 32 (1) 82-85
- 184 Ferreira AC, Peter AA, Mendez AJ , et al. Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles. Circulation 2004; 110 (23) 3599-3603
- 185 Heiss C, Amabile N, Lee AC , et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol 2008; 51 (18) 1760-1771
- 186 Chironi G, Simon A, Hugel B , et al. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 2006; 26 (12) 2775-2780
- 187 Jayachandran M, Litwiller RD, Owen WG , et al. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. Am J Physiol Heart Circ Physiol 2008; 295 (3) H931-H938
- 188 Mallat Z, Benamer H, Hugel B , et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101 (8) 841-843
- 189 Nozaki T, Sugiyama S, Koga H , et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol 2009; 54 (7) 601-608
- 190 Diehl P, Nagy F, Sossong V , et al. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost 2008; 99 (4) 711-719
- 191 Bal L, Ederhy S, Di Angelantonio E , et al. Factors influencing the level of circulating procoagulant microparticles in acute pulmonary embolism. Arch Cardiovasc Dis 2010; 103 (6-7) 394-403
- 192 Azzam H, Zagloul M. Elevated platelet microparticle levels in valvular atrial fibrillation. Hematology 2009; 14 (6) 357-360
- 193 Rectenwald JE, Myers Jr DD, Hawley AE , et al. D-dimer, P-selectin, and microparticles: novel markers to predict deep venous thrombosis. A pilot study. Thromb Haemost 2005; 94 (6) 1312-1317
- 194 Chirinos JA, Heresi GA, Velasquez H , et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol 2005; 45 (9) 1467-1471
- 195 Lee YJ, Jy W, Horstman LL , et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 1993; 72 (4) 295-304
- 196 Simak J, Gelderman MP, Yu H, Wright V, Baird AE. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost 2006; 4 (6) 1296-1302
- 197 Lackner P, Dietmann A, Beer R , et al. Cellular microparticles as a marker for cerebral vasospasm in spontaneous subarachnoid hemorrhage. Stroke 2010; 41 (10) 2353-2357
- 198 Michelsen AE, Notø AT, Brodin E, Mathiesen EB, Brosstad F, Hansen JB. Elevated levels of platelet microparticles in carotid atherosclerosis and during the postprandial state. Thromb Res 2009; 123 (6) 881-886
- 199 Jung KH, Chu K, Lee ST , et al. Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol 2009; 66 (2) 191-199
- 200 Tantawy AA, Matter RM, Hamed AA, Shams El Din El Telbany MA. Platelet microparticles in immune thrombocytopenic purpura in pediatrics. Pediatr Hematol Oncol 2010; 27 (4) 283-296
- 201 Galli M, Grassi A, Barbui T. Platelet-derived microvesicles in thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Thromb Haemost 1996; 75 (3) 427-431
- 202 Jimenez JJ, Jy W, Mauro LM, Horstman LL, Soderland C, Ahn YS. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br J Haematol 2003; 123 (5) 896-902
- 203 Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol 2004; 125 (6) 804-813
- 204 Warkentin TE, Hayward CP, Boshkov LK , et al. Sera from patients with heparin-induced thrombocytopenia generate platelet-derived microparticles with procoagulant activity: an explanation for the thrombotic complications of heparin-induced thrombocytopenia. Blood 1994; 84 (11) 3691-3699
- 205 Hughes M, Hayward CP, Warkentin TE, Horsewood P, Chorneyko KA, Kelton JG. Morphological analysis of microparticle generation in heparin-induced thrombocytopenia. Blood 2000; 96 (1) 188-194
- 206 Sellam J, Proulle V, Jüngel A , et al. Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 2009; 11 (5) R156
- 207 Jy W, Tiede M, Bidot CJ , et al. Platelet activation rather than endothelial injury identifies risk of thrombosis in subjects positive for antiphospholipid antibodies. Thromb Res 2007; 121 (3) 319-325
- 208 Dignat-George F, Camoin-Jau L, Sabatier F , et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb Haemost 2004; 91 (4) 667-673
- 209 Guiducci S, Distler JH, Jüngel A , et al. The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis. Arthritis Rheum 2008; 58 (9) 2845-2853
- 210 Erdbruegger U, Grossheim M, Hertel B , et al. Diagnostic role of endothelial microparticles in vasculitis. Rheumatology (Oxford) 2008; 47 (12) 1820-1825
- 211 Sabatier F, Darmon P, Hugel B , et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002; 51 (9) 2840-2845
- 212 Minagar A, Jy W, Jimenez JJ , et al. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 2001; 56 (10) 1319-1324
- 213 Chamouard P, Desprez D, Hugel B , et al. Circulating cell-derived microparticles in Crohn's disease. Dig Dis Sci 2005; 50 (3) 574-580
- 214 Faure V, Dou L, Sabatier F , et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 2006; 4 (3) 566-573
- 215 Lok CA, Van Der Post JA, Sargent IL , et al. Changes in microparticle numbers and cellular origin during pregnancy and preeclampsia. Hypertens Pregnancy 2008; 27 (4) 344-360