Zentralbl Chir 2017; 142(02): 216-225
DOI: 10.1055/s-0035-1558118
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Werkstoffe/Biomaterialien in der interventionellen und operativen Medizin – eine kurze Übersicht und aktuelle Trends

Materials/Biomaterials in Clinical Practice – a Short Review and Current Trends
T. Bolle
1   Lehr- und Forschungsgebiet Tissue Engineering & Textile Implants, Institut für Textiltechnik, RWTH Aachen, Deutschland
,
F. Meyer
2   Universitätsklinik für Allgemein-, Viszeral- und Gefäßchirurgie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Deutschland
,
F. Walcher
3   Klinik für Unfallchirurgie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Deutschland
,
C. Lohmann
4   Orthopädische Universitätsklinik, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Deutschland
,
S. Jockenhövel
5   Lehr- und Forschungsgebiet Tissue Engineering & Textile Implants, Institut für Angewandete Medizintechnik, Helmholtz-Institut für Biomedizinische Technik, RWTH Aachen, Deutschland
,
T. Gries
1   Lehr- und Forschungsgebiet Tissue Engineering & Textile Implants, Institut für Textiltechnik, RWTH Aachen, Deutschland
,
W. Hoffmann
6   Institut für Molekularbiologie und Medizinische Chemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Deutschland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
13. November 2015 (online)

Zusammenfassung

Die Verwendung von Biomaterialien spielt heute in der interventionellen und operativen Medizin eine extrem wichtige Rolle. Trotz der enormen Fortschritte in den letzten Jahrzehnten befindet sich die Entwicklung von Biomaterialien aber erst am Anfang. Zum einen wächst unser Wissen um die beteiligten molekularen und zellulären Vorgänge immer noch exponenziell und zum anderen werden momentan viele neue Materialien mit sehr interessanten Eigenschaften entwickelt. Im Rahmen dieser Übersicht werden die verwendeten Werkstoffe und Verbundmaterialien sowie typische Anwendungen in der interventionellen und operativen Medizin vorgestellt. Darüber hinaus werden die Bedeutung von Biomaterialien für die Herstellung künstlicher Gewebe zur Unterstützung der Regenerationsmedizin sowie die Möglichkeiten zur Funktionalisierung von Biomaterialien diskutiert. Außerdem wird auf die vielfältigen Sterilisationsverfahren eingegangen. Die gezielte Entwicklung neuartiger Biomaterialien und ihre erfolgreiche Translation in die klinische Praxis erfordert deshalb in Zukunft eine noch breitere interdisziplinäre wissenschaftliche Zusammenarbeit.

Abstract

Biomaterials play a major role in interventional medicine and surgery. However, the development of biomaterials is still in its early phases in spite of the huge progress made within the last decades. On the one hand, this is because our knowledge of the molecular and cellular processes associated with biomaterials is still increasing exponentially. On the other hand, a wide variety of advanced materials with highly interesting properties is being developed currently. This review provides a short introduction into the variety of materials in use as well as their application in interventional medicine and surgery. Also the importance of biomaterials for tissue engineering in the field of regenerative medicine and the functionalisation of biomaterials, including sterilisation methods are discussed. For the future, an even broader interdisciplinary scientific collaboration is necessary in order to develop novel biomaterials and facilitate their translation into clinical practice.

Ergänzendes Material

 
  • Literatur

  • 1 Agrawal CM. Reconstructing the human body using biomaterials. JOM 1998; 50: 31-35
  • 2 Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295: 1014-1017
  • 3 Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mat Sci Eng R 2009; 66: 1-70
  • 4 Williams DF. On the nature of biomaterials. Biomaterials 2009; 30: 5897-5909
  • 5 Williams DF. The Williams Dictionary of Biomaterials. Liverpool: Liverpool University Press; 1999
  • 6 Bose S, Roy M, Bandyopadhyay A. et al. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012; 30: 546-554
  • 7 Nicholson JW. The Chemistry of Medical and Dental Materials. Greenwich: Royal Society of Chemistry; 2002
  • 8 Antunes RA, de Oliveira MCL. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater 2012; 8: 937-962
  • 9 Hench LL. The story of bioglass. J Mater Sci Mater Med 2006; 17: 967-978
  • 10 Scheidbach H, Wolff S, Lippert H. et al. Prothetische Materialien in der Bauchwandchirurgie – ein Überblick. Zentralbl Chir 2011; 136: 568-574
  • 11 Klinge U, Klosterhalfen B, Öttinger A. et al. PVDF as a new polymer for the construction of surgical meshes. Biomaterials 2002; 23: 3487-3493
  • 12 Wick G, Backovic A, Rabensteiner E. et al. The immunology of fibrosis: innate and adaptive responses. Trends Immunol 2010; 31: 110-119
  • 13 Kalshetti PP, Rajendra VB, Dixit DN. et al. Hydrogels as a drug delivery system and applications: a review. Int J Pharm Pharm Sci 2012; 4: 1-7
  • 14 Censi R, Di Martino P, Vermonden T. et al. Hydrogels for protein delivery in tissue engineering. J Control Release 2012; 161: 680-692
  • 15 Lienemann PS, Lutolf MP, Ehrbar M. et al. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 2012; 64: 1078-1089
  • 16 Saito N, Aoki K, Usui Y. et al. Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev 2011; 40: 3824-3834
  • 17 Saito N, Usui Y, Aoki K. et al. Carbon nanotubes: biomaterial applications. Chem Soc Rev 2009; 38: 1897-1903
  • 18 Halloul Z, Rimpler H, Waliszewski M. et al. First-in-man results of a novel vascular graft coated with resorbable polymer for aortic reconstructions – a multicenter, non-randomized safety study. Langenbecks Arch Surg 2014; 399: 629-638
  • 19 Pal K, Paulson AT, Rousseau D. Biopolymers in Controlled-Release Delivery Systems. In: Ebnesajjad S. ed. Handbook of Biopolymers and Biodegradable Plastics. Boston: William Andrew Publishing; 2013: 329-363
  • 20 Prestwich GD, Atzet S. Engineered Natural Materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. eds. Biomaterials Science: an Introduction to Materials in Medicine. 3rd ed. Oxford: Elsevier; 2013: 195-208
  • 21 Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol 2008; 20: 109-116
  • 22 Kuhn LT. Biomaterials. In: Enderle J, Bronzino J. ed. Introduction to Biomedical Engineering. 3rd ed. Burlington: Academic Press; 2012: 219-271
  • 23 He W, Benson R. Polymeric Biomaterials. In: Ebnesajjad S. ed. Handbook of Biopolymers and Biodegradable Plastics. Oxford: William Andrew; 2013: 87-108
  • 24 Uemura T, Dong J, Wang Y. et al. Transplantation of cultured bone cells using combinations of scaffolds and culture techniques. Biomaterials 2003; 24: 2277-2286
  • 25 Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 2006; 27: 4894-4903
  • 26 Fragonas E, Valente M, Pozzi-Mucelli M. et al. Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 2000; 21: 795-801
  • 27 Ongpipattanakul B, Nguyen T, Zioncheck TF. et al. Development of tricalcium phosphate/amylopectin paste combined with recombinant human transforming growth factor beta 1 as a bone defect filler. J Biomed Mater Res 1997; 36: 295-305
  • 28 Dias GJ, Peplow PV, Teixeira F. Osseous regeneration in the presence of oxidized cellulose and collagen. J Mater Sci Mater Med 2003; 14: 739-745
  • 29 Vögelin E, Jones NF, Huang JI. et al. Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J Bone Joint Surg Am 2005; 87: 1323-1331
  • 30 Anchisi C, Meloni MC, Maccioni AM. Chitosan beads loaded with essential oils in cosmetic formulations. J Cosmet Sci 2005; 57: 205-214
  • 31 Bertone M, Dini V, Romanelli P. et al. Objective analysis of heterologous collagen efficacy in hard-to-heal venous leg ulcers. Wounds 2008; 20: 245-249
  • 32 Choy YB, Cheng F, Choi H. et al. Monodisperse gelatin microspheres as a drug delivery vehicle: release profile and effect of crosslinking density. Macromol Biosci 2008; 8: 758-765
  • 33 Boateng JS, Matthews KH, Stevens HN. et al. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008; 97: 2892-2923
  • 34 Bonferoni MC, Sandri G, Gavini E. et al. Microparticle systems based on polymer-drug interaction for ocular delivery of ciprofloxacin. I. In vitro characterization. J Drug Deliv Sci Technol 2007; 17: 57-62
  • 35 Bu HZ, Gukasyan HJ, Goulet L. et al. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 2007; 8: 91-107
  • 36 Butler MF, Ng YF, Pudney PD. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci Part A: Polym Chem 2003; 41: 3941-3953
  • 37 Migliaresi C. Composites. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. eds. Biomaterials Science: an Introduction to Materials in Medicine. 3rd ed. Oxford: Elsevier; 2013: 223-240
  • 38 Mayer J, Blum J, Wintermantel E. Grundlagen des Tissue Engineering. In: Wintermantel E, Ha SW. Hrsg. Medizintechnik: Life Science Engineering. 5. Aufl. Heidelberg: Springer; 2009: 373-386
  • 39 Hirsch-Kauffmann M, Schweiger M, Schweiger MR. Biologie und Molekulare Medizin für Mediziner und Naturwissenschaftler: 7. Aufl. Stuttgart: Thieme; 2009
  • 40 Heine H. Lehrbuch der biologischen Medizin: Grundregulation und Extrazelluläre Matrix. 3. Aufl.. Stuttgart: Thieme; 2007
  • 41 Li X, Yang Y, Fan Y. et al. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. J Biomed Mater Res A 2014; 102: 1580-1594
  • 42 Moreira R, Velz TJ, Alves N. et al. Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng Part C Methods 2015; 21: 530-540
  • 43 Koch S, Flanagan TC, Sachweh JS. et al. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 2010; 31: 4731-4739
  • 44 Itoh M, Hiraoka Y, Kataoka K. et al. Novel collagen sponge reinforced with polyglycolic acid fiber produces robust, normal hair in murine hair reconstitution model. Tissue Eng 2004; 10: 818-824
  • 45 Wang A, Ao Q, Wei Y. et al. Physical properties and biocompatibility of a porous chitosan-based fiber-reinforced conduit for nerve regeneration. Biotechnol Lett 2007; 29: 1697-1702
  • 46 Slivka MA, Leatherbury NC, Kieswetter K. et al. Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Eng 2001; 7: 767-780
  • 47 Ratner BD, Hoffman AS. Physiochemical Surface Modification of Materials Used in Medicine. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. eds. Biomaterials Science: an Introduction to Materials in Medicine. 3rd ed. Oxford: Elsevier; 2013: 259-275
  • 48 Klee D, Lahann J, Plüster W. Dünne Beschichtung auf Biomaterialien. In: Wintermantel E, Ha SW. Hrsg. Medizintechnik: Life Science Engineering. 5. Aufl. Heidelberg: Springer; 2009: 863-877
  • 49 Hoffman AS, Hubbell JA. Surface-Immobilized Biomolecules. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. eds. Biomaterials Science: an Introduction to Materials in Medicine. 3rd ed. Oxford: Elsevier; 2013: 339-348
  • 50 Zaffaroni A. New approaches to drug administration. Proceedings of the 31st International Congress of Pharmaceutical Sciences 1971. 19-20
  • 51 Ha SW, Wintermantel E. Kontrollierte Therapeutische Systeme. In: Wintermantel E, Ha SW. Hrsg. Medizintechnik: Life Science Engineering. 5. Aufl. Heidelberg: Springer; 2009: 1297-1312
  • 52 Heilmann K. Therapeutische Systeme. 2. Aufl. Stuttgart: Ferdinand Enke Verlag; 1982
  • 53 Grover M, Utreja P. Recent advances in drug delivery systems for anti-diabetic drugs: a review. Curr Drug Deliv 2014; 11: 444-457
  • 54 Idée JM, Guiu B. Use of lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol 2013; 88: 530-549
  • 55 Ariga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 2007; 9: 2319-2340
  • 56 Volodkin D, Skirtach A, Möhwald H. LbL Films as Reservoirs for Bioactive Molecules. In: Börner HG, Lutz JF. eds. Bioactive Surfaces. Heidelberg: Springer; 2011: 135-161
  • 57 Shalaby SW, Nagatomi SD, Powell EF. Sterilization Techniques for Biotextiles for Medical Applications. In: King MW, Gupta BS, Guidoin R. eds. Biotextiles as Medical Implants. Cambridge: Woodhead Publishing; 2013: 157-167
  • 58 Ha SW, Koller M, Göllner G. Sterilisation. In: Wintermantel E, Ha SW. Hrsg. Medizintechnik: Life Science Engineering. 5. Aufl. Heidelberg: Springer; 2009: 113-125
  • 59 Chu CC. 5 Biodegradable Polymeric Biomaterials: An Updated Overview. In: Wong JY, Joseph DB, Donald RP. eds. Biomaterials: Principles and Practices. Boca Raton: CRC Press; 2012: 1-38
  • 60 White A, Burns D, Christensen TW. Effective terminal sterilization using supercritical carbon dioxide. J Biotechnol 2006; 123: 504-515
  • 61 Lamber B, Martin J. Sterilization of Implants and Devices. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. eds. Biomaterials Science: an Introduction to Materials in Medicine. 3rd ed. Oxford: Elsevier; 2013: 1339-1353
  • 62 Zhou M. Exceptional properties by design. Science 2013; 339: 1161-1162
  • 63 Annabi N, Tamayol A, Shin SR. et al. Surgical materials: current challenges and nano-enabled solutions. Nano Today 2014; 9: 574-589
  • 64 Pashuck ET, Stevens MM. Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 2012; 4: 160sr4
  • 65 Atala A, Kasper FK, Mikos AG. et al. Engineering complex tissues. Sci Transl Med 2012; 4: 160rv12
  • 66 Griffin MF, Butler PE, Seifalian AM. et al. Control of stem cell fate by engineering their micro and nanoenvironment. World J Stem Cells 2015; 7: 37-50
  • 67 Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015; 9: 4