Synlett 2015; 26(16): 2243-2246
DOI: 10.1055/s-0035-1560092
letter
© Georg Thieme Verlag Stuttgart · New York

Stereospecific Oxidative Demetallation of Highly Functionalized CpCo(1,3-Diene) Complexes: An Experimental and Computational Study

Ryan L. Holland
,
Joseph M. O'Connor*
a   Department of Chemistry and Biochemistry (0358), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA   Email: jmoconnor@ucsd.edu
,
Kevin D. Bunker
a   Department of Chemistry and Biochemistry (0358), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA   Email: jmoconnor@ucsd.edu
,
Pengjin Qin
a   Department of Chemistry and Biochemistry (0358), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA   Email: jmoconnor@ucsd.edu
,
Stephen K. Cope
a   Department of Chemistry and Biochemistry (0358), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA   Email: jmoconnor@ucsd.edu
,
Kim K. Baldridge*
b   Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland   Email: kimb@oci.uzh.ch
,
Jay S. Siegel*
c   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. of China
a   Department of Chemistry and Biochemistry (0358), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA   Email: jmoconnor@ucsd.edu
› Author Affiliations
Further Information

Publication History

Received: 03 May 2015

Accepted after revision: 13 July 2015

Publication Date:
24 August 2015 (online)


Kudos to Professor K. Peter C. Vollhardt for his 25 years of innovative contributions to SYNLETT

Abstract

Three diastereomers of a highly functionalized tetrasubstituted cyclopentadienylcobalt–diene complex, (Cp)Co[η4-CH(CO2Et)=C(SO2Ph)C(SiMe3)=CH(CO2Et)] (4-ZE, 4-EZ, 4-ZZ; Cp = C5H5), undergo oxidative demetallation by ceric ammonium ­nitrate (CAN) to give the corresponding metal-free dienes, CH(CO2Et)=C(SO2Ph)C(SiMe3)=CH(CO2Et) (5-ZE, 5-EZ, 5-ZZ), with retention of configuration. The oxidation of 4-ZE by iodine occurs with a different stereoselectivity than that observed with CAN, to provide the fourth diastereomer 5-EE in high yield. B97D/Def2-TZVPP(CH2Cl2) calculations predict the diene free-energy ordering as: 5-EE < 5-ZE < 5-EZ < 5-ZZ.

Supporting Information

 
  • References and Notes

  • 1 New address: K. D. Bunker, Chief Scientific Officer, Kalyra Pharmaceuticals, Inc. 6181 Cornerstone Ct E, Suite 106, San Diego, CA 92121, USA.
  • 2 Yamazaki H, Hagihara N. J. Organomet. Chem. 1970; 21: 431

    • For cobalt-cyclopentadiene products from two alkynes and a carbene, see:
    • 5a O'Connor JM, Pu L, Uhrhammer R, Johnson JA, Rheingold AL. J. Am. Chem. Soc. 1989; 111: 1889
    • 5b O'Connor JM, Fong BS, Ji H.-J, Hiibner K, Rheingold AL. J. Am. Chem. Soc. 1995; 8029
  • 7 For cobalt-1,3-diene products from two alkenes and an alkyne, see: Wakatsuki Y, Aoki K, Yamazaki H. J. Am. Chem. Soc. 1979; 101: 1123
  • 8 For cobalt-diene products from two alkynes and an amine, see: Aubert C, Betschmann P, Eichberg MJ, Gandon V, Heckrodt TJ, Lehmann J, Malacria M, Masjost B, Paredes E, Vollhardt KP. C, Whitener GD. Chem. Eur. J. 2007; 13: 7443
  • 10 For cobalt-1,4-dienes from alkyne, alkene, and carbene coupling, see: Holland RL, Bunker KD, Chen CH, DiPasquale AG, Rheingold AL, Baldridge KK, O’Connor JM. J. Am. Chem. Soc. 2008; 130: 10093
  • 12 O'Connor JM, Johnson J. Synlett 1989; 57
  • 13 Gandon V, Aubert C, Malacria M, Vollhardt KP. C. Chem. Commun. 2008; 1599
  • 14 Acyclic 1,3-diene complexes with two nonhydrogen anti substituents (as in 4-EE) are rare. For two relevant examples, see: Harvey DF, Johnson BM, Ung CS, Vollhardt KP. C. Synlett 1989; 15
  • 16 Representative Oxidation Procedure Diene complex ZZ-(η5-C5H5)Co[η4-CH(CO2Et)=C(SO2Ph)C(TMS)= CH(CO2Et)] (4-ZZ; 0.120 g, 0.224 mmol) was dissolved in a 1:1 mixture (20 mL) of MeCN–pentane, and CAN (0.369g, 0.673 mmol) was added at –78 °C. The reaction was stirred at 4 °C for 18 h. Removal of volatiles, extraction of the residue with benzene, and chromatography (silica gel, 10% EtOAc–hexanes) gave 5-ZZ (76 mg, 83%) as a yellow oil. For representative spectroscopic data see ref. 18.
  • 17 See Supporting Information for characterization data.
  • 18 The experimental (CDCl3) and calculated (CH2Cl2) vinyl hydrogen chemical shifts and assignments are as follows. For 5-ZZ: δ = 5.98 (H2; calcd 6.14), 5.80 (H5, calcd 5.01); for 5-EZ: δ = 6.77 (H2; calcd 6.88), 5.49 (H5, calcd 4.75); for 5-ZE: δ = 6.21 (H2; calcd 6.20), 6.02 (H5, calcd 6.51); for 5-EE: δ = 6.77 (H2; calcd 7.10), 6.11 (H5, calcd 6.22).
  • 19 See Supporting Information for all computational details.