Synthesis 2015; 47(24): 3972-3982
DOI: 10.1055/s-0035-1560187
paper
© Georg Thieme Verlag Stuttgart · New York

Preparation of a New Spirobi[thieno[2,3-c]pyran] and Its Selective Mono- and Dimetalation: Application for the Preparation of Soluble Conjugated Oligothiophenes and Pyrene Derivatives

Vasudevan Dhayalan
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Fernando Rabasa Alcañiz
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Veronika Werner
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Konstantin Karaghiosoff
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Paul Knochel*
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany   Email: paul.knochel@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 15 July 2015

Accepted after revision: 24 July 2015

Publication Date:
02 September 2015 (online)


Abstract

3-Thienylacetic acid was converted in six steps into a new spirobi[thieno[2,3-c]pyran] (overall yield: 52%). The spirobi[thieno[2,3-c]pyran] was selectively mono- or dimetalated with butyllithium and then transmetalated with zinc chloride; cross-coupling reaction with various aryl or heteroaryl bromides, including bromo-oligothiophenes, acid chlorides, and 1-bromopyrene, produced the corresponding spiro derivatives in high yields.

Supporting Information

 
  • References

    • 1a Vintonyak VV, Warburg K, Kruse H, Grimme S, Hübel K, Rauh D, Waldmann H. Angew. Chem. Int. Ed. 2010; 49: 5902
    • 1b Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2008; 41: 581
    • 1c Huo X.-H, Xie J.-H, Wang Q.-S, Zhou Q.-L. Adv. Synth. Catal. 2007; 349: 2477
    • 1d Cheng X, Zhang Q, Xie J.-H, Wang L.-X, Zhou Q.-L. Angew. Chem. Int. Ed. 2005; 44: 1118
    • 1e Sommer S, Waldmann H. Chem. Commun. 2005; 5684
    • 1f Xie J.-H, Wang L.-X, Fu Y, Zhu S.-F, Fan B.-M, Duan H.-F, Zhou Q.-L. J. Am. Chem. Soc. 2003; 125: 4404
    • 1g Birman VB, Rheingold AL, Lam KC. Tetrahedron: Asymmetry 1999; 10: 125
    • 1h Sannigrahi M. Tetrahedron 1999; 55: 9007
    • 1i Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
    • 2a Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 2b Cui C.-B, Kakeya H, Osada H. Tetrahedron 1996; 52: 12651
  • 3 Marson CM. Chem. Soc. Rev. 2011; 40: 5514
    • 4a Xie J.-H, Bao D.-H, Zhou Q.-L. Synthesis 2015; 47: 460
    • 4b Yuan M.-L, Xie J.-H, Yang X.-H, Zhou Q.-L. Synthesis 2014; 46: 2910
    • 4c Yang X.-H, Xie J.-H, Zhou Q.-L. Org. Chem. Front. 2014; 1: 190
    • 4d Shen J.-J, Zhu S.-F, Cai Y, Xu H, Xie X.-L, Zhou Q.-L. Angew. Chem. Int. Ed. 2014; 53: 13188
    • 4e Yang X.-H, Wang K, Zhu S.-F, Xie J.-H, Zhou Q.-L. J. Am. Chem. Soc. 2014; 136: 17426
    • 4f Yang X.-H, Xie J.-H, Liu W.-P, Zhou Q.-L. Angew. Chem. Int. Ed. 2013; 52: 7833
    • 4g Cheng Q.-Q, Zhu S.-F, Zhang Y.-Z, Xie X.-L, Zhou Q.-L. J. Am. Chem. Soc. 2013; 135: 14094
    • 4h Liu C, Xie J.-H, Li Y.-L, Chen J.-Q, Zhou Q.-L. Angew. Chem. Int. Ed. 2013; 52: 593
    • 4i Song S, Zhu S.-F, Pu L.-Y, Zhou Q.-L. Angew. Chem. Int. Ed. 2013; 52: 6072
    • 4j Xie J.-H, Liu X.-Y, Yang X.-H, Xie J.-B, Wang L.-X, Zhou Q.-L. Angew. Chem. Int. Ed. 2012; 51: 201
    • 4k Yang Y, Zhu S.-F, Duan H.-F, Zhou C.-Y, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 2248
    • 4l Duan H.-F, Xie J.-H, Shi W.-J, Zhang Q, Zhou Q.-L. Org. Lett. 2006; 8: 1497
    • 5a Karatholuvhu MS, Sinclair A, Newton AF, Alcaraz ML, Stockman RA, Fuchs PL. J. Am. Chem. Soc. 2006; 128: 12656
    • 5b Sebahar PR, Williams RM. J. Am. Chem. Soc. 2000; 122: 5666
    • 5c Crimmins MT, Pace JM, Nantermet PG, Meade AS. K, Thomas JB, Watterson SH, Wagman AS. J. Am. Chem. Soc. 1999; 121: 10249
    • 5d Edmondson SD, Danishefsky SJ. Angew. Chem. Int. Ed. 1998; 37: 1138
    • 5e Corey EJ, Kang M.-C, Desai MC, Ghosh AK, Houpis IN. J. Am. Chem. Soc. 1988; 110: 649
    • 6a Nasu K, Nakagawa T, Nomura H, Lin C.-J, Cheng C.-H, Tseng M.-R, Yasuda T, Adachi C. Chem. Commun. 2013; 49: 10385
    • 6b Nakagawa T, Ku S.-Y, Wong K.-T, Adachi C. Chem. Commun. 2012; 48: 9580
    • 6c Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C. Angew. Chem. Int. Ed. 2012; 51: 11311
    • 6d Saragi TP. I, Spehr T, Siebert A, Lieker TF, Salbeck J. Chem. Rev. 2007; 107: 1011
    • 6e Wu Y, Li J, Fu Y, Bo Z. Org. Lett. 2004; 6: 3485
    • 7a Schlücker T, Dhayalan V, Langhals H, Sämann C, Knochel P. Asian J. Org. Chem. 2015; 4: 763
    • 7b Sämann C, Dhayalan V, Schreiner PR, Knochel P. Org. Lett. 2014; 16: 2418
    • 7c Otani T, Hachiya M, Hashizume D, Matsuo T, Tamao K. Chem. Asian J. 2011; 6: 350
    • 7d Sureshbabu R, Saravanan V, Dhayalan V, Mohanakrishnan AK. Eur. J. Org. Chem. 2011; 922
    • 7e Dhayalan V, Clement AJ, Jagan R, Mohanakrishnan AK. Eur. J. Org. Chem. 2009; 531
    • 7f Delabouglise D, Hmyene M, Horowitz G, Yassar A, Garnier F. Adv. Mater. (Weinheim, Ger.) 1992; 4: 107
    • 8a Piers E, Yeung BW. A, Fleming FF. Can. J. Chem. 1993; 71: 280
    • 8b Trost BM, Shimizu M. J. Am. Chem. Soc. 1982; 104: 4299
    • 8c Trost BM, Jungheim LN. J. Am. Chem. Soc. 1980; 102: 7910
    • 8d Trost BM, Chan DM. T. J. Am. Chem. Soc. 1979; 101: 6429
    • 9a Du Y, Huang H.-Y, Liu H, Ruan Y.-P, Huang P.-Q. Synlett 2011; 565
    • 9b Pehlivan L, Métay E, Laval S, Dayoub W, Delbrayelle D, Mignani G, Lemaire M. Eur. J. Org. Chem. 2011; 7400
  • 10 Smith AB, Kanoh N, Ishiyama H, Minakawa N, Rainier JD, Hartz RA, Cho YS, Cui H, Moser WH. J. Am. Chem. Soc. 2003; 125: 8228
    • 11a Klatt T, Groll K, Knochel P. Chem. Commun. 2013; 49: 6953
    • 11b Alonso B, Ocejo M, Carrillo L, Vicario JL, Reyes E, Uria U. J. Org. Chem. 2013; 78: 614
    • 12a Kamimura A, Komatsu H, Moriyama T, Nozaki Y. Tetrahedron 2013; 69: 5968
    • 12b Bu X, Deady LW. Synth. Commun. 1999; 29: 4223
  • 13 Delpech B, Calvo D, Lett R. Tetrahedron Lett. 1996; 37: 1019
    • 14a Shen Z.-L, Sommer K, Knochel P. Synthesis 2015; 47: 2617
    • 14b Dagousset G, François C, León T, Blanc R, Dagousset ES, Knochel P. Synthesis 2014; 46: 3133
    • 14c Manolikakes SM, Barl NM, Sämann C, Knochel P. Z. Naturforsch., B 2013; 68: 411
    • 14d Karig G, Spencer JA, Gallagher T. Org. Lett. 2001; 3: 835
    • 16a Negishi E.-i. Acc. Chem. Res. 1982; 15: 340
    • 16b Negishi E.-i, Valente LF, Kobayashi M. J. Am. Chem. Soc. 1980; 102: 3298
    • 16c Negishi E.-i, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
  • 17 Negishi E.-i, Bagheri V, Chatterjee S, Luo F.-T, Miller JA, Stoll AT. Tetrahedron Lett. 1983; 24: 5181
  • 18 Bäuerle P. The Synthesis of Oligothiophenes. In Handbook of Oligo- and Polythiophenes. Fichou D. Wiley-VCH; Weinheim: 1999
    • 19a Duarte TM. F, Müllen K. Chem. Rev. 2011; 111: 7260
    • 19b Crawford AG, Dwyer AD, Liu Z, Steffen A, Beeby A, Pålsson L.-O, Tozer DJ, Marder TB. J. Am. Chem. Soc. 2011; 133: 13349
    • 19c Bernhardt S, Kastler M, Enkelmann V, Baumgarten M, Müllen K. Chem. Eur. J. 2006; 12: 6117