Subscribe to RSS
DOI: 10.1055/s-0035-1560221
Small Is (also) Beautiful: Dynamic Covalent Self-Assembly of Cryptates
Publication History
Received: 06 August 2015
Accepted: 14 August 2015
Publication Date:
03 September 2015 (online)
Abstract
Cryptands can be seen as the smallest three-dimensional molecular cages still capable of accommodating (ionic) guests. We have recently realized the first dynamic covalent self-assembly of a monometallic cryptate, whose template synthesis and unique structure crucially rest on orthoester bridgeheads [Nat. Commun. 2015, 6, 7129]. In this Synpacts article, I discuss selected aspects that led to this discovery and I attempt to put the study into the context of recent trends in the self-assembly of larger molecular cages.
1 Introduction
2 Dynamic Covalent Self-Assembly of Orthoester Cryptates
3 From Covalent to Metallosupramolecular to Dynamic Covalent Synthesis
4 Orthoester Cryptates as Tiny Self-Assembled Cages
5 Conclusions
-
References and Notes
- 1 Supramolecular Chemistry. Steed JW, Gale PA. Wiley-VCH; Weinheim: 2012
- 2a Pedersen CJ. J. Am. Chem. Soc. 1967; 89: 7017
- 2b Dietrich B, Lehn JM, Sauvage JP. Tetrahedron Lett. 1969; 10: 2885
- 2c Ogoshi T, Kanai S, Fujinami S, Yamagishi T.-a, Nakamoto Y. J. Am. Chem. Soc. 2008; 130: 5022
- 2d Lee S, Chen C.-H, Flood AH. Nat. Chem. 2013; 5: 704
- 3 Lehn J.-M. Angew. Chem. Int. Ed. 2015; 54: 3276
- 4a Corbett PT, Leclaire J, Vial L, West KR, Wietor J.-L, Sanders JK. M, Otto S. Chem. Rev. 2006; 106: 3652
- 4b Jin Y, Wang Q, Taynton P, Zhang W. Acc. Chem. Res. 2014; 47: 1575
- 5 Brachvogel R.-C, von Delius M. Chem. Sci. 2015; 6: 1399
- 7 A major limitation of orthoester exchange as a tool for DCC is its incompatibility with water. During acid-catalyzed exchange reactions, water has to be excluded to avoid hydrolysis to esters.
- 8a Ludlow RF, Otto S. Chem. Soc. Rev. 2008; 37: 101
- 8b Mattia E, Otto S. Nat. Nanotech. 2015; 10: 111
- 9 Slater AG, Cooper AI. Science 2015; 348 : in press; DOI: 10.1126/science.aaa8075
- 10 Brachvogel R.-C, Hampel F, von Delius M. Nat. Commun. 2015; 6: 7129
- 11 Gokel GW In Crown Ethers and Cryptands. Royal Society of Chemistry; Cambridge: 1991
- 12 Brachvogel R.-C, Maid H, von Delius M. Int. J. Mol. Sci. 2015; 16: 20641
- 13 Krossing I, Raabe I. Angew. Chem. Int. Ed. 2004; 43: 2066
- 14a Coxon AC, Stoddart JF. J. Chem. Soc., Perkin Trans. 1 1977; 767
- 14b Parsons DG. J. Chem. Soc., Perkin Trans. 1 1978; 451
- 15a Saalfrank RW, Dresel A, Seitz V, Trummer S, Hampel F, Teichert M, Stalke D, Stadler C, Daub J, Schünemann V, Trautwein AX. Chem. Eur. J. 1997; 3: 2058
- 15b Saalfrank RW, Maid H, Scheurer A. Angew. Chem. Int. Ed. 2008; 47: 8794
- 16a Cram DJ. Science 1983; 219: 1177
- 16b Harris K, Fujita D, Fujita M. Chem. Commun. 2013; 49: 6703
- 16c Han M, Engelhard DM, Clever GH. Chem. Soc. Rev. 2014; 43: 1848
- 16d Brown CJ, Toste FD, Bergman RG, Raymond KN. Chem. Rev. 2015; 115: 3012
- 16e Smulders MM. J, Riddell IA, Browne C, Nitschke JR. Chem. Soc. Rev. 2013; 42: 1728
- 16f Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
- 17a Chichak KS, Cantrill SJ, Pease AR, Chiu S.-H, Cave GW. V, Atwood JL, Stoddart JF. Science 2004; 304: 1308
- 17b Ponnuswamy N, Cougnon FB. L, Clough JM, Pantoş GD, Sanders JK. M. Science 2012; 338: 783
- 17c Ayme J.-F, Beves JE, Leigh DA, McBurney RT, Rissanen K, Schultz D. Nat. Chem. 2012; 4: 15