Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(18): 2565-1569
DOI: 10.1055/s-0035-1560266
DOI: 10.1055/s-0035-1560266
letter
Iodine-Mediated Oxidative Coupling of Hydroxamic Acids with Amines towards a New Peptide-Bond Formation
Further Information
Publication History
Received: 10 April 2015
Accepted after revision: 18 August 2015
Publication Date:
15 October 2015 (online)
Abstract
An efficient and straightforward approach for the coupling of Nα-protected hydroxamic acids with an amino component in the presence of iodine is delineated. The reaction is mediated by the formation of unstable but reactive acyl nitroso intermediates. The peptide hydroxamic acids were found to be useful substrates in coupling reactions.
Key words
Nα-protected amino hydroxamic acids - amino acid esters - oxidative acylation - acyl nitroso intermediate - iodineSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560266.
- Supporting Information
-
References and Notes
- 1 Pattabiraman VR, Bode JW. Nature (London, U.K.) 2011; 480: 471
- 2a Allen CL, Chhatwal R, Williams JM. J. Chem. Commun. 2012; 666
- 2b Roy S, Roy S, Gribble GW. Tetrahedron 2012; 68: 9867
- 2c Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
- 2d Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
- 3a Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 33: 7453
- 3b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
- 3c Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
- 3d Basavaprabhu; Vishwanatha TM, Nageswarao P, Sureshbabu VV. Synthesis 2013; 45: 1569
- 3e Joullie MM, Lassen KM. ARKIVOC 2010; (viii): 189
- 3f Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
- 4a El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
- 4b Lippert JW. III. ARKIVOC 2005; (xiv): 87
- 4c Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
- 4d Han SY, Kim YA. Tetrahedron 2004; 60: 2447
- 4e Wilson RM, Stockdill JL, Wu X, Li X, Vadola PA, Park PK, Wang P, Danishefsky SJ. Angew. Chem. Int. Ed. 2012; 51: 2834
- 4f Bode JW. Curr. Opin. Drug Discovery Dev. 2006; 9: 765
- 5a Kent SB. H. Chem. Soc. Rev. 2009; 38: 338
- 5b Spasser L, Brik A. Angew. Chem. Int. Ed. 2012; 51: 6840
- 5c Chalker JM. Chem. Biol. Drug. Des. 2013; 81: 122
- 6a Shen B, Makley DM, Johnston JN. Nature (London, U.K.) 2010; 465: 1027
- 6b Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
- 6c Watson AJ. A, Maxwell AC, Williams JM. J. Org. Lett. 2009; 11: 2667
- 6d Yoo W.-J, Li C.-J. J. Am. Chem. Soc. 2006; 128: 13064
- 6e Cadoni R, Porcheddu A, Giomelli G, Luca LD. Org. Lett. 2012; 14: 5014
- 6f Orliac A, Pardo DG, Bombrun A, Cossy J. Org. Lett. 2013; 15: 902
- 6g Tian J, Gao WC, Zhou DM, Zhang C. Org. Lett. 2012; 14: 3020
- 7a Pellois JP, Muir TW. Curr. Opin. Chem. Biol. 2006; 10: 487
- 7b Aimoto S. Biopolymers 1999; 51: 247
- 7c Rademann J. Angew. Chem. Int. Ed. 2004; 43: 4554
- 7d Hemantha HP, Narendra N, Sureshbabu VV. Tetrahedron 2012; 68: 9491
- 7e Payne RJ, Wong CH. Chem. Commun. 2010; 46: 21
- 7f Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
- 8a Dawson PE, Muir TW, Clark-Lewis I, Kent SB. H. Science 1994; 266: 776
- 8b Sohma Y, Hua QX, Whittaker J, Weiss MA, Kent SB. H. Angew. Chem. Int. Ed. 2010; 49: 5489
- 9a Dirksen A, Dawson PE. Curr. Opin. Chem. Biol. 2008; 12: 760
- 9b Hackenberger CP. R, Schwarzer D. Angew. Chem. Int. Ed. 2008; 47: 10030
- 9c Dawson PE, Kent SB. H. Annu. Rev. Biochem. 2000; 69: 923
- 9d Kent SB. H. J. Pept. Sci. 2003; 9: 574
- 9e Wong CT. T, Tung CL, Li X. Mol. BioSyst. 2013; 9: 826
- 10 Mende F, Beisswenger M, Seitz O. J. Am. Chem. Soc. 2010; 132: 11110
- 11a Nilsson BL, Kiessling LL, Raines R. T. Org. Lett. 2000; 13: 1939
- 11b Van Berkel SS, Van Eldijk MB, van Hest JC. M. Angew. Chem. Int. Ed. 2011; 50: 8806
- 12a Wan Q, Chen J, Yuan Y, Danifshesky SJ. J. Am. Chem. Soc. 2008; 130: 15814
- 12b Strehin I, Gourevitch D, Zhang Y, Heber Katz E, Messersmith PB. Biomater. Sci. 2013; 1: 603
- 12c Warren JD, Miller JS, Keding SJ, Danishefsky SJ. J. Am. Chem. Soc. 2004; 126: 6576
- 13a Fang GM, Li YM, Shen F, Huang YC, Li J.-B, Lin Y, Cui H.-K, Liu L. Angew. Chem. Int. Ed. 2011; 50: 7645
- 13b Zheng JS, Tang S, Huang YC, Liu L. Acc. Chem. Res. 2013; 46: 2475
- 14a McKervey MA, O’Sullivan MB, Myers PL, Green RH. J. Chem. Soc., Chem. Commun. 1993; 94
- 14b Merkx R, Brouwer A, Rijkers DT. S, Liskamp RM. J. Org. Lett. 2005; 7: 1125
- 14c Merkx R, Van Haren MJ, Rijkers DT. S, Liskamp RM. J. J. Org. Chem. 2007; 72: 4574
- 14d Raz R, Rademann J. Org. Lett. 2012; 14: 5038
- 14e Mhidia R, Beziere N, Blanpain A, Pommery N, Melnyk O. Org. Lett. 2010; 12: 3982
- 14f Crich D, Sana K, Guo S. Org. Lett. 2007; 9: 4423
- 14g Crich D, Sharma I. Angew. Chem. Int. Ed. 2009; 48: 2355
- 14h Sasaki K, Crich D. Org. Lett. 2010; 12: 3254
- 14i Talan RS, Sanki AK, Sucheck SJ. Carbohydr. Res. 2009; 344: 2048
- 14j Mhidia R, Boll E, Fecourt F, Ermolenko M, Ollivier N, Sasaki K, Crich D, Delpech B, Melnyk O. Bioorg. Med. Chem. 2013; 21: 3479
- 14k Crich D, Sasaki K. Org. Lett. 2009; 11: 3514
- 14l Chen W, Shao J, Hu M, Yu W, Giulianotti MA, Houghten RA, Yu Y. Chem. Sci. 2013; 4: 970
- 14m Wu X, Stockdill JL, Wang P, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 4098
- 14n Yamashiro D, Blake JF. Int. J. Pept. Prot. Chem. 1981; 18: 383
- 14o Dyer FB, Park CM, Joseph R, Garner P. J. Am. Chem. Soc. 2011; 133: 20033
- 14p Joseph R, Dyer FB, Garner P. Org. Lett. 2013; 15: 732
- 14q Pan J, Devarie-Baez NO, Xian M. Org. Lett. 2011; 11: 1092
- 14r Wu W, Zhang Z, Liebeskind LS. J. Am. Chem. Soc. 2011; 133: 14256
- 14s Mali SM, Jadhav SV, Gopi HN. Chem. Commun. 2012; 48: 7085
- 14t Wang P, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 17045
- 14u Wang P, Li X, Zhu J, Chen J, Yuan Y, Wu X, Danishefsky SJ. J. Am. Chem. Soc. 2011; 133: 1597
- 15a Bode JW, Fox RM, Baucom KD. Angew. Chem. Int. Ed. 2006; 45: 1248
- 15b Wu J, Ruiz-Rudriguez J, Comstock JM, Dong JZ, Bode JW. Chem. Sci. 2011; 2: 1976
- 15c Carrillo N, Davalos EA, Russak JA, Bode JW. J. Am. Chem. Soc. 2006; 128: 1452
- 15d Ju L, Lippert AR, Bode JW. J. Am. Chem. Soc. 2008; 130: 4253
- 15e Ju L, Bode JW. Org. Biomol. Chem. 2009; 7: 2259
- 15f Pattabiraman VR, Ogunkoya AO, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 5114
- 16a Sklarz B, Al-Sayab AF. J. Chem. Soc. 1964; 1318
- 16b Ozaki S, Masui M. Chem. Pharm. Bull. 1977; 25: 1179
- 17 Atkinson RN, Storey BM, King SB. Tetrahedron Lett. 1996; 37: 9287
- 18 Hoffmann E, Faiferman I. J. Org. Chem. 1964; 29: 748
- 19a Seifter S, Gallop PM, Michaels S, Meilman E. J. Biol. Chem. 1960; 235: 2613
- 19b Gallop PM, Seifter S, Lukin M, Meilman E. J. Biol. Chem. 1960; 235: 2619
- 19c Wieland T, Fritz H. Chem. Ber. 1953; 86: 1186
- 20a Narendra N, Chennakrishnareddy G, Sureshbabu VV. Org. Biomol. Chem. 2009; 7: 3520
- 20b Vasantha B, Hemantha HP, Sureshbabu VV. Synthesis 2010; 2990
- 21a Yoganathan S, Miller SJ. Org. Lett. 2013; 15: 602 ; and references cited therein
- 21b Dube P, Nathel NF. F, Vetelino M, Couturier M, Aboussafy L, Pichette S, Jorgensen ML, Hardink M. Org. Lett. 2009; 11: 5622
- 22a Boyland E, Nery R. J. Chem. Soc. 1966; 354
- 22b Kobashi K, Sakaguchi K, Takebe S, Hosaka K. Anal. Biochem. 1985; 146: 7
- 23a Miller TW, Isenberg JS, Roberts DD. Chem. Rev. 2009; 109: 3099
- 23b Keck GE, Webb RR, Yates JB. Tetrahedron 1981; 37: 4007
- 23c Kirby GW. Chem. Soc. Rev. 1978; 6: 1
- 23d Corrie JE. T, Kirby GW, Mackinnon JW. M. J. Chem. Soc., Perkin Trans. 1 1985; 883
- 23e Kirby GW, Mcguigan H, Mackinnon JW. M. McLean D, Sharma RP. J. Chem. Soc., Perkin Trans. 1 1985; 1437
- 23f Iwasa S, Tajima K, Tsushima S, Nishiyama H. Tetrahedron Lett. 2001; 42: 5897
- 24a Streith J, Defoin A. Synthesis 1994; 1107
- 24b Keck GE, Webb RR. II. J. Org. Chem. 1982; 47: 1302
- 24c Chaiyaveij D, Cleary L, Batsanov AS, Marder TB, Shea KJ, Whiting A. Org. Lett. 2011; 13: 3442
- 25a Tantry SJ, Venkataramanarao R, Chennakrishnareddy G, Sureshbabu VV. J. Org. Chem. 2007; 73: 9360
- 25b Madhu C, Vishwanatha TM, Sureshbabu VV. Synthesis 2013; 45: 2727
- 25c Gopi HN, Sureshbabu VV. Tetrahedron Lett. 1998; 39: 9769
- 26 Enantiopurehydroximate of α-amino acids and peptides were synthesized through reported protocol, see: Giacomelli G, Porcheddu A, Salaris M. Org. Lett. 2003; 5: 2715
- 27a Anilkumar R, Chandrasekhar S, Sridhar M. Tetrahedron Lett. 2000; 41: 5291
- 27b Dube P, Nathel NF. F, Vetelino M, Couturier M, Aboussafy CL, Pichette S, Jorgensen ML, Hardink M. Org. Lett. 2009; 11: 5622
- 28 Wang P, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 17045
- 29 General Procedure for the Preparation of Dipeptide Esters 7a–l* To a solution of Nα-protected amino hydroxamic acid 5 (1.0 equiv) in DMSO (5 mL), I2 (0.3 equiv), and amino acid ester 6 (1.2 equiv) were added at r.t. and stirred. After completion of the reaction, as monitored by TLC analysis (5–30 min), the solvent was removed under reduced pressure, and the crude residue was diluted with EtOAc (20 mL). The organic layer was washed with 10% Na2CO3 (15 mL), 10% citric acid (15 mL), H2O (10 mL) and brine solution (10 mL), dried over anhydrous Na2SO4, and evaporated in vacuo. The crude residue was purified through silica gel column chromatography (100–200 mesh), EtOAc–hexane (40:60) as eluent to obtain dipeptide esters.
- 30 Methyl 2-[2-({[(4aH-Fluoren-9-yl)methoxy]carbonyl}-amino)propanamido]-3-phenylpropanoate [Fmoc-Ala-Phe-OMe, 7a]. 1H NMR (300 MHz, CDCl3): δ = 1.33 (d, J = 3 Hz, 3H , CH3), 3.12–3.17 (m, 2 H, CH2Ph), 3.70 (s, 3 H, OCH3), 4.05–4.09 (m, 1 H, δCH, NHCHCH3, Ala), 4.17–4.20 (m, 1 H, αCH,-NHCHCH2, Phe), 4.31 (t, J = 9 Hz, 1 H, CH2CH, Fmoc), 4.34 (d, J = 9 Hz, 2 H, CH 2CH, Fmoc), 5.32 (br d, J = 6 Hz, 1 H, NH, Fmoc), 6.46 (br d, J = 6 Hz, 1 H, NH, amide), 7.06–7.76 (m, 13 H, 5 CH, Ph, 8 CH, Fmoc). 13C NMR (75 MHz, CDCl3): δ = 18.6 (CβAla), 37.9 (CβPhe), 47.2 (CαFmoc), 50.2 (CαAla), 52.5 (Me), 53.3 (CαPhe), 67.2 (CβFmoc), 120.1, 125.1, 127.3, 127.8, 128.6, 128.7, 129.3 (CH, Ar), 135.7 (C, Ar), 141.4 and 143.9 (C, Fmoc), 156.4 (C=O, Fmoc), 171.7 and 171.8 (C=O). HRMS: m/z [M + H]+ calcd for C28H29N2O5: 473.2076; found: 473.2062.
- 31 Methyl 2-[2-({[(4aH-Fluoren-9-yl)methoxy]carbonyl}-amino)methylbutanamido]propanoate [Fmoc-Val-Ala-OMe (7b)] 1H NMR (300 MHz, CDCl3): δ = 0.95 [d, J = 5 Hz, 6 H, CHCH(CH 3)2], 1.26 (d, J = 5 Hz, 3 H, CHCH 3), 2.04–2.10 [m, 1 H, CHCH(CH3)2], 3.69 (s, 3 H, OCH3), 4.18–4.25 (m, 2 H, δCH, NHCHCH, Val, αCH, NHCHCH3, Ala), 4.35 (t, J = 3 Hz, 1 H, CH2CH, Fmoc), 4.42 (d, J = 5 Hz, 2 H, CH 2CH, Fmoc), 5.28 (br d, J = 6 Hz, 1 H, NH, Fmoc), 6.42 (br d, J = 5 Hz, 1 H, NH, amide), 7.26–7.77 (m, 8 H, 8 CH, Fmoc). 13C NMR (75 MHz, CDCl3): δ = 17.5 (CβAla), 19.1 (CγVal), 31.1 (CβVal), 47.3 (CαFmoc), 50.1 (CαAla), 52.3 (Me), 59.0 (CαVal), 67.2 (CβFmoc), 120.1, 125.1, 127.2, 127.8 (CH, Fmoc), 141.4 and 143.8 (C, Fmoc), 156.4 (C=O, Fmoc), 172.2 and 172.3 (C=O). HRMS: m/z [M + H]+ calcd for C24H29N2O5: 425.2076; found: 425.2082.
- 32 Optical purity of products 7b,c was determined by HPLC. See Supporting Information for the HPLC chromatograms.
For a review on ligation of noncysteine amino acids, see: