Synlett 2016; 27(01): 121-125
DOI: 10.1055/s-0035-1560381
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a Tethered myo-Inositol (1,3,4,5,6)Pentakisphosphate (IP5) Derivative as a Probe for Biological Studies

Mark Gregory*
a   School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia   eMail: m.gregory4@pgrad.unimelb.edu.au   eMail: aholmes@unimelb.edu.au
,
Bruno Catimel
b   Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
,
Meng-Xin Yin
a   School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia   eMail: m.gregory4@pgrad.unimelb.edu.au   eMail: aholmes@unimelb.edu.au
,
Melanie Condron
b   Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
,
Antony W. Burgess
b   Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
,
Andrew B. Holmes*
a   School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia   eMail: m.gregory4@pgrad.unimelb.edu.au   eMail: aholmes@unimelb.edu.au
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 24. September 2015

Accepted after revision: 13. November 2015

Publikationsdatum:
30. November 2015 (online)


This paper is dedicated to Prof. Steven Ley on the occasion of his 70th birthday and in recognition of his pioneering synthesis of the GPI anchor.

Abstract

There is sufficient evidence to suggest that myo-inositol pentakisphosphate is a vital intermediate species in higher inositol phosphate metabolism, however, its biological roles and physiological function in cells remain uncertain. A tethered myo-inositol pentakisphosphate (IP5) derivative with a terminal amine group is synthesised allowing facilitated immobilisation onto M-270 magnetic Dynabeads for pull-down experiments and biosensor chip preparation for surface plasmon resonance studies. The probes are validated by both pull-down and surface plasmon resonance (SPR) studies of the known binding protein GRP-1 (general receptor for phosphoinositides 1), and furthermore by SPR studies of protein kinase B (PKB or AKT) binding.

Supporting Information

 
  • References and Notes

  • 1 Potter BV. L, Lampe D. Angew. Chem., Int. Ed. Engl. 1995; 34: 1933
  • 2 Prestwich G. Chem. Biol. 2004; 11: 619
  • 3 Berridge M, Irvine R. Nature 1984; 312: 315
  • 4 Best M, Zhang H, Prestwich G. Nat. Prod. Rep. 2010; 27: 1403
  • 5 Johnson LF, Tate ME. Ann. N. Y. Acad. Sci. 1970; 165: 526
  • 7 Menniti F, Miller R, Putney J, Shears S. J. Biol. Chem. 1993; 268: 3850
  • 8 Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK. Science 2003; 299: 114
  • 9 Quignard JF, Rakotoarisoa L, Mironneau J, Mironneau C. J. Physiol. 2003; 549: 729
  • 10 Piccolo E, Vignati S, Maffucci T, Innominato P, Riley A, Potter B, Pandolfi P, Broggini M, Iacobelli S, Innocenti P, Falasca M. Oncogene 2004; 23: 1754
  • 11 Campbell S, Fisher RJ, Towler EM, Fox S, Issaq HJ, Wolfe T, Phillips LR, Rein A. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 10875
  • 12 Gao Y, Wang H.-y. J. Biol. Chem. 2007; 282: 26490
  • 13 Rzepecki P, Prestwich G. J. Org. Chem. 2002; 67: 5454
  • 14 Rossi A, Riley A, Tovey S, Rahman T, Dellis O, Taylor E, Veresov V, Potter B, Taylor C. Nat. Chem. Biol. 2009; 5: 631
  • 15 Conway S, Gardiner J, Grove S, Johns M, Lim Z.-Y, Painter G, Robinson DE. J, Schieber C, Thuring J, Wong L, Yin M.-X, Burgess A, Catimel B, Hawkins P, Ktistakis N, Stephens L, Holmes AB. Org. Biomol. Chem. 2010; 8: 66
    • 16a Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW, Holmes AB. J. Proteome Res. 2008; 7: 5295
    • 16b Catimel B, Yin M.-X, Schieber C, Condron M, Patsiouras H, Catimel J, Robinson DE. J. E, Wong LS.-M, Nice EC, Holmes AB, Burgess AW. J. Proteome Res. 2009; 8: 3712
    • 16c Catimel B, Kapp E, Yin M.-X, Gregory M, Wong LS.-M, Condron M, Church N, Kershaw N, Holmes AB, Burgess AW. J. Proteomics 2013; 82: 35
  • 17 Prestwich GD, Marecek JF, Mourey RJ, Theibert AB, Ferris CD, Danoff SK, Snyder SH. J. Am. Chem. Soc. 1991; 113: 1822
  • 18 Ozaki S, Koga Y, Ling L, Watanabe Y, Kimura Y, Hirata M. Bull. Chem. Soc. Jpn. 1994; 67: 1058
    • 19a Billington DC, Baker R, Kulagowski JJ, Mawer IM, Vacca JP, Desolms SJ, Huff JR. J. Chem. Soc., Perkin Trans. 1 1989; 1423
    • 19b Lee HW, Kishi Y. J. Org. Chem. 1985; 50: 4402
  • 20 Lampe D, Liu C, Potter BV. L. J. Med. Chem. 1994; 37: 907
  • 23 Corson T, Aberle N, Crews C. ACS Chem. Biol. 2008; 3: 677
  • 24 Zhang H, Thompson J, Prestwich G. Org. Lett. 2009; 11: 1551
  • 25 5-O-Amino Ethoxyethyl-phosphate-myo-inositol-1,3,4,6-tetraphosphate (1) To a solution of the fully protected derivative 16 (10 mg, 72 μmol) dissolved in MeOH–THF (2:3, 2 mL) was added Pd(OH)2 (10 mg). The mixture was reacted under H2 (10 bar pressure, in a Buchi hydrogenation vessel) and was allowed to stir vigorously at r.t. for 48 h. The mixture was filtered twice through Celite and the filtrate was lyophilised to give the desired product 1 (5 mg, quant.) as a white powder. IR (neat): 3500–3000 (br), 1579, 1409, 1353, 1087, 973 cm-1. 1H NMR (500 MHz, D2O): δ = 4.60–4.40 (m, 5 H), 4.25 (br s, 1 H), 4.14 (br s, 2 H), 3.88–3.81 (m, 4 H), 3.76–3.64 (m, 2 H), 3.14 (br s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 76.7, 76.2, 75.5, 73.0, 71.6, 69.9, 66.3, 66.0, 60.4, 39.2. 31P NMR (202 MHz, CDCl3): δ = 4.22 (2 P), 3.01 (2 P), 0.44 (1 P). HRMS (ESI): m/z [M – H] calcd for C10H25NO22P5: 665.9562; found: 665.9587; m/z [M – 2 H]2– calcd for C10H24NO22P5: 332.4745; found: 332.4755.
  • 26 Jackson SG, Al-Saigh S, Schultz C, Junop M. BMC Struct. Biol. 2011; 11: 11
  • 27 Nguyen T, Goodrich J. Nat. Methods 2006; 3: 135
  • 28 Kavran J, Klein D, Lee A, Falasca M, Isakoff S, Skolnik E, Lemmon M. J. Biol. Chem. 1998; 273: 30497