Synlett 2016; 27(02): 259-261
DOI: 10.1055/s-0035-1560486
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Domino Addition–Cyclization Reaction between Terminal Alkynes, Carbon Disulfide, and Oxiranes

Majid Ghazanfarpour-Darjani*
Islamic Azad University, Buinzahra Branch, P.O. Box 14115-175, Buinzahra, Iran   Email: m.ghazanfarpour@modares.ac.ir
,
Mahboobeh Babapour-Kooshalshahi
Islamic Azad University, Buinzahra Branch, P.O. Box 14115-175, Buinzahra, Iran   Email: m.ghazanfarpour@modares.ac.ir
,
Seyed Mahmoud Mousavi-Safavi
Islamic Azad University, Buinzahra Branch, P.O. Box 14115-175, Buinzahra, Iran   Email: m.ghazanfarpour@modares.ac.ir
,
Jafar Akbari-Neyestani
Islamic Azad University, Buinzahra Branch, P.O. Box 14115-175, Buinzahra, Iran   Email: m.ghazanfarpour@modares.ac.ir
,
Mehdi Khalaj
Islamic Azad University, Buinzahra Branch, P.O. Box 14115-175, Buinzahra, Iran   Email: m.ghazanfarpour@modares.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 06 July 2015

Accepted after revision: 03 September 2015

Publication Date:
13 October 2015 (online)


Abstract

Copper or silver salts promote a domino addition–cyclization reaction between terminal alkynes, carbon disulfide, and oxiranes in a regioselective manner to afford 1,4-oxathiane derivatives in good yield.

Supporting Information

 
  • References and Notes

  • 1 Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
  • 2 Dömling A. Chem. Rev. 2006; 106: 17
  • 3 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 4a Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 4b Bock VD, Hiemstra H, Van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
  • 5 Berg R, Straub BF. Beilstein J. Org. Chem. 2013; 9: 2715
  • 6 Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. J. Am. Chem. Soc. 2003; 125: 3192
  • 7 Rueping M, Antonchick AP, Brinkmann C. Angew. Chem. Int. Ed. 2007; 46: 6903
  • 8 Lu Y, Johnstone TC, Arndtsen BA. J. Am. Chem. Soc. 2009; 131: 11284
  • 9 Frantz DE, Fassler R, Carreira EM. J. Am. Chem. Soc. 1999; 121: 11245
  • 10 Aschwanden P, Frantz DE, Carreira EM. Org. Lett. 2000; 2: 2331
  • 11 Fässler R, Frantz DE, Oetiker J, Carreira EM. Angew. Chem. Int. Ed. 2002; 41: 3054
  • 12 Knöpfel TF, Carreira EM. J. Am. Chem. Soc. 2003; 125: 6054
    • 13a Yavari I, Ahmadian S, Ghazanfarpour-Darjani M, Solgi Y. Tetrahedron Lett. 2011; 52: 668
    • 13b Yavari I, Ghazanfarpur-Darjani M, Bayat MJ, Malekafzali A. Synlett 2014; 25: 959
    • 13c Yavari I, Ghazanfarpur-Darjani M, Nematpour M. Tetrahedron Lett. 2015; 56: 2416
  • 14 Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
    • 15a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 15b Davies MB. Polyhedron 1992; 11: 285
    • 16a Zani L, Bolm C. Chem. Commun. 2006; 4263
    • 16b Ji JX, Au-Yeung TT. L, Wu J, Yip CW, Chan AS. C. Adv. Synth. Catal. 2004; 346: 42
  • 17 Ando T, Kano D, Minakata S, Ryu I, Komatsu M. Tetrahedron 1998; 54: 13485
  • 18 Typical Procedure for Preparation of 4 and 6 To a mixture of terminal alkyne (1.5–2.0 mmol), Cu(OAc)2 (0.1–0.2 mmol), sodium ascorbate (0.2–0.3 mmol), and (i-Pr)2NEt (1.5–2.0 mmol) in H2O–t-BuOH (2:1, 3 mL) at 0 °C were added CS2 (3 mmol) and the oxirane or aziridine (1.0 mmol). After 30 min the resulting brownish mixture was warmed to ambient temperature and stirred for 8–14 h. After completion of the reaction, the mixture was diluted with EtOAc (5 mL) and sat. NH4Cl solution (5 mL) was added. The mixture was stirred for an additional 30 min and the organic layer separated. The aqueous layer was extracted with EtOAc (3 × 4 mL), and the combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by chromatography (silica gel; hexane–EtOAc, 3:1) to give the pure product.
  • 19 N-Ts Aziridine 5 was prepared using the literature procedures.17 Representative Analytical Data 2-Benzylidene-6-methyl-1,4-oxathiane-3-thione (4a) Pale yellow oil; yield 0.19 g (79%). IR (KBr): νmax = 3025, 2967, 1610, 1543, 1326, 1121 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 1.29 (3 H, d, 3 J = 7.0 Hz, Me), 3.30 (1 H, dd, 2 J = 11.7 Hz, 3 J = 9.1 Hz, CH), 3.41 (1 H, dd, 2 J = 11.7 Hz, 3 J = 5.6 Hz, CH), 4.58–4.64 (1 H, m, CH), 5.49 (1 H, s, CH), 7.18 (1 H, t, 3 J = 6.9 Hz), 7.26 (2 H, d, 3 J = 6.8 Hz), 7.31 (2 H, d, 3 J = 6.6 Hz). 13C NMR (125.7 MHz, CDCl3): δ = 19.1 (Me), 42.8 (CH2), 79.1 (CH), 102.2 (CH), 125.4 (2 CH), 129.2 (CH), 131.0 (2 CH), 136.3 (C), 156.7 (C), 213.9 (C). MS: m/z (%) = 236 (2) [M+], 160 (38), 119 (56), 105 (74), 77 (100), 58 (42). Anal. Calcd for C12H12OS2 (236.35): C, 60.98; H, 5.12; S, 27.13. Found: C, 61. 15; H, 5.27; S, 27.19. 2-Benzylidene-6-ethyl-1,4-oxathiane-3-thione (4b) Pale yellow oil; yield 0.18 g (73%). IR (KBr): νmax = 3021, 3010, 2945, 1634, 1536, 1325, 1130 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 0.91 (3 H, t, 3 J = 6.2 Hz, Me), 1.56–1.60 (2 H, m, CH2), 3.25–3.37 (2 H, m, CH2), 4.61–4.66 (1 H, m, CH), 5.23 (1 H, s, CH), 7.14 (1 H, t, 3 J = 6.7 Hz), 7.24 (2 H, d, 3 J = 6.4 Hz), 7.31 (2 H, d, 3 J = 6.4 Hz). 13C NMR (125.7 MHz, CDCl3): δ = 14.3 (Me), 24.7 (CH2), 45.2 (CH2), 80.7 (CH), 101.5 (CH), 124.3 (2 CH), 127.4 (CH), 130.0 (2 CH), 136.2 (C), 153.8 (C), 215.4 (C). MS: m/z (%) = 250 (7) [M+], 174 (47), 119 (61), 105 (78), 77 (100), 72 (58). Anal. Calcd for C13H14OS2 (250.38): C, 62.36; H, 5.64; S, 25.61. Found: C, 62.56; H, 5.78; S, 25.69.