Synlett 2016; 27(02): 237-240
DOI: 10.1055/s-0035-1560503
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Method for Thiocyanation of Aromatic and Heteroaromatic Compounds using Cyanuric Chloride and Ammonium Thiocyanate under Conventional and Nonconventional Conditions

P. Venkanna
a   Department of Chemistry, Jawaharlal Nehru Technological University, Hyderabad- T. S, India
,
K. C. Rajanna*
b   Department of Chemistry, Osmania University, Hyderabad-500 007, T. S., India   Email: kcrajannaou@yahoo.com
,
M. Satish Kumar
b   Department of Chemistry, Osmania University, Hyderabad-500 007, T. S., India   Email: kcrajannaou@yahoo.com
,
M. Venkateswarlu
b   Department of Chemistry, Osmania University, Hyderabad-500 007, T. S., India   Email: kcrajannaou@yahoo.com
,
M. Moazzam Ali
c   Department of Chemistry, Aizza College of Engineering & Technology, Hyderabad- T.S, India
› Author Affiliations
Further Information

Publication History

Received: 07 August 2015

Accepted after revison: 15 September 2015

Publication Date:
20 October 2015 (online)


Abstract

Highly efficient thiocyanation of aromatic and heteroaromatic compounds has been accomplished by using cyanuric chloride (NCCl)3/NH4SCN in dichloromethane under conventional and ultrasonic-assisted conditions. Sonicated reactions reached completion with reduced reaction times. The protocol involves a simple workup.

 
  • References and Notes

  • 1 Billard T, Langlois BR, Medebielle M. Tetrahedron Lett. 2001; 42: 3463
  • 2 Nguyen T, Rubinstein M, Wakselman C. J. Org. Chem. 1981; 46: 1938
  • 3 Billard T, Large S, Langlois BR. Tetrahedron Lett. 1997; 38: 65
  • 4 Grieco PA, Yokoyama Y, Williams EJ. J. Org. Chem. 1978; 43: 1283
  • 5 Zhang ZH, Liebeskind LS. Org. Lett. 2006; 8: 4331
  • 6 Riemschneider R, Wojahn F, Orlick G. J. Am. Chem. Soc. 1951; 73: 5905
  • 7 Lee YT, Choi SY, Chung YK. Tetrahedron Lett. 2007; 48: 5673
  • 8 Wood JL. Organic Reactions . Vol. 3. Wiley & Sons; New York: 1967: 240
  • 9 Yadav JS, Reddy BV. S, Shubashree S, Sadashiv K. Tetrahedron Lett. 2004; 45: 2951
  • 10 Gitkis A, Becker JY. Electrochim. Acta 2010; 55: 5854
  • 11 Mackinnon DL, Farrel AP. Environ. Toxicol. Chem. 1992; 11: 1541
  • 12 Leblanc BW, Jursic BS. Synth. Commun. 1998; 28: 3591
  • 13 Ju Y, Kumar D, Varma RS. J. Org. Chem. 2006; 71: 6697
  • 14 Iranpoor N, Firouzabadi H, Akhlaghinia B, Azadi R. Synthesis 2004; 92
  • 15 Liu YY, Xu SH, Jung J, Chae J. Synlett 2012; 23: 2692
  • 16 Sun N, Zhang H, Mo W, Hu B, Shen Z, Hu X. Synlett 2013; 24: 1443
  • 17 Bhalerao DS, Agamanchi KG. Synlett 2007; 2952
  • 18 Jiao J, Nguyen LX, Patterson DR, Flowers RA. II. Org. Lett. 2007; 9: 1323
  • 19 Yadav JS, Reddy BV. S, Reddy UV. S, Chary DN. Synthesis 2008; 1283
  • 20 Yadav JS, Reddy BV. S, Gupta MK. Synthesis 2004; 1983
  • 21 Guy RG. The Chemistry of Cyanates and Their Thio Derivatives . Patai S. John Wiley & Sons; New York: 1977
  • 22 Yadav JS, Reddy BV. S, Shubashree S, Sadashiv K. Tetrahedron Lett. 2004; 45: 2951
  • 23 Wood JL. Inorganic Reactions . Vol. 3. Adams R. Chap. 6 John Wiley & Sons; New York: 1946
  • 24 Memarian HR, Mohammadpoor-Baltork I, Nikoofar K. Ultrason. Sonochem. 2008; 15: 456
  • 25 Soderback E. Acta Chem. Scand. 1954; 8: 1851
  • 26 Angus AB, Bacon RG. R. J. Chem. Soc. 1958; 774
  • 27 Uemura S, Okano M, Ichikawa K. Bull. Chem. Soc. Jpn. 1973; 46: 3254
  • 28 Uemura S, Onoe A, Okazaki H, Okano M. Bull. Chem. Soc. Jpn. 1975; 48: 619
  • 29 Kita Y, Takada T, Mihara S, Whelan BA, Tohma H. J. Org. Chem. 1995; 60: 7144
  • 30 Khazaei A, Alizadeh A, Vaghei RG. Molecules 2001; 6: 253
  • 31 Grant MS, Snyder HR. J. Am. Chem. Soc. 1960; 82: 2742
  • 32 Toste FD, Stefano VD, Still IW. Synth. Commun. 1995; 25: 1277
  • 33 Nair V, George TG, Nair LG, Panicker SB. Tetrahedron Lett. 1999; 40: 1195
  • 34 Chakrabarty M, Sarkar S. Tetrahedron Lett. 2003; 44: 8131
  • 35 Wu G, Liu Q, Shen Y, Wu W, Wu L. Tetrahedron Lett. 2005; 46: 5831
  • 36 Iranpoor N, Firouzabadi H, Khalili D, Shahin R. Tetrahedron Lett. 2010; 51: 3508
  • 37 Iranpoor N, Firouzabadi H, Azadi R. Tetrahedron Lett. 2006; 47: 5531
  • 38 Kumar A, Ahamd P, Maurya RA. Tetrahedron Lett. 2007; 48: 1399
  • 39 Khazaei A, Zolfigol MA, Mokhlesi M, Panah FD, Sajjadifar S. Helv. Chim. Acta 2012; 95: 106
  • 40 Sajjadifar S, Louie O. J. Chem. 2013; Article ID 674946; doi: 10.1155/2013/674946
  • 41 Venkatesham N, Rajendar Reddy K, Rajanna KC, Veerasomaiah P. J. Sulfur Chem. 2014; 35: 606
  • 42 Sudhakar Chary V, Krishnaiah G, Satish Kumar M, Rajanna KC. Phosphorus, Sulfur Silicon Relat. Elem. 2014; 190: 1146
  • 43 Smolin EM, Rapoport L. s-Triazine and Derivatives. In The Chemistry of Heterocyclic Compounds. Interscience; New York: 1959
  • 44 Quirke ME. 1,3,5-Triazines . In Comprehensive Heterocyclic Chemistry . Vol. 3. Katritzky AR, Rees CW. Pergamon; New York: 1984: 457
  • 45 Venkataraman K, Wagle DR. Tetrahedron Lett. 1979; 3037
  • 46 Probst DA, Hanson PR, Barda DA. Cyanuric Chloride . In Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons; New York: 2004. doi: 10.1002/047084289X.rn00320
  • 47 Gupton JT, Andrews SA. Org. Synth. 1990; 7: 197
  • 48 Chouai A, Simanek EE. J. Org. Chem. 2008; 73: 2357
  • 49 De Luca L, Giacomelli G, Procheddu A. J. Org. Chem. 2001; 66: 7907
    • 50a Giacomelli G, Porcheddu A, De Luca L. Curr. Org. Chem. 2004; 8: 1497
    • 50b Falorni M, Porcheddu A, Taddei A. Tetrahedron Lett. 1999; 40: 4395
    • 50c Falorni M, Giacomelli G, Porcheddu A, Taddei M. J. Org. Chem. 1999; 64: 8962
    • 50d Falchi A, Giacomelli G, Porcheddu A, Taddei M. Synlett 2000; 275
    • 50e De Luca L, Giacomelli G, Taddei M. J. Org. Chem. 2001; 66: 2534
    • 50f De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2001; 3: 1519
    • 50g De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2001; 3: 3041
    • 51a Kaminski ZJ, Paneth P, Rudzinski J. J. Org. Chem. 1998; 63: 4248
    • 51b Forbes DC, Barrett EJ, Lewis DL, Smith MC. Tetrahedron Lett. 2000; 41: 9943
    • 51c Bandgar BP, Pandit SS. Tetrahedron Lett. 2002; 43: 3413
    • 51d Kaminski ZJ, Kolesinska B, Kolesinska J, Sabatino G, Chelli M, Rovero P, Blaszczyk M, Glowka ML, Papini AM. J. Am. Chem. Soc. 2005; 127: 16912
  • 52 Venkanna P, Rajanna KC, Satish Kumar M, Bismillah Ansari M, Moazzam Ali M. Tetrahedron Lett. 2015; 56: 5164
    • 53a Mason TJ, Lorimer JP. Sonochemistry, Theory, Applications and Uses of Ultrasound in Chemistry. John Wiley and Sons; New York: 1988
    • 53b Suslick KS. Science 1990; 249: 1439
    • 53c Mason TJ. Chem. Soc. Rev. 1997; 26: 443
    • 53d Weissler A, Coofer HW, Snyder S. J. Am. Chem. Soc. 1950; 72: 1976
    • 53e Singh V, Kaur KP, Khurana A, Kad GL. Resonance 1998; 56
    • 54a Mason TJ. Chemistry with Ultrasound . Elsevier Science Publishers Ltd; London: 1990
    • 54b Suslick KS. Ultrasound, Its Chemical, Physical and Biological Effects. VCH Publishers, Inc; Weinheim: 1988
    • 54c Margulis MA. Advances in Sonochemistry . Vol. 1. Mason TJ. Greenwich Connection/JAI Press; London: 1990: 49
  • 56 Memarian HR, Baltork IM, Nikoofar K. Ultrason. Sonochem. 2008; 15: 456
  • 57 Akhlaghinia B, Pourali AR, Rahmani N. Synth. Commun. 2012; 42: 1184
  • 58 Thiocyanation of Organic Compounds; Typical Procedure: Phenol (32 mmol) was added to a mixture of cyanuric chloride (32 mmol) and ammonium thiocyanate (31.6 mmol) in CH2Cl2 (30 mL) and the mixture was heated to reflux with stirring. The progress of the reaction was monitored by TLC (n-hexane–EtOAc, 7:3). For ultrasonically assisted reactions, the reaction mixture was ultrasonicated in a TCL (BIO-Technics India) sonicator and the progress of the reaction was followed by TLC. Upon completion of the reaction, the mixture was filtered, and the organic layer was washed with brine, dried over anhydrous Na2SO4, filtered, and the solvent was removed. The residue was purified by chromatography on silica (n-hexane–EtOAc) to afford 2-thiocyanatophenol. Yield: 90% (thermal) and 92% (ultrasonication). 1H NMR (CDCl3): δ = 7.14 (d, J = 8.1 Hz, 1 H), 6.73 (m, J = 7.9 Hz, 2 H), 6.54 (d, J = 8.1 Hz, 1 H), 4.83 (s, 1 H). MS: m/z = 151.