RSS-Feed abonnieren
DOI: 10.1055/s-0035-1560520
Solid-Phase-Based Synthesis of Ureidopyrimidinone–Peptide Conjugates for Supramolecular Biomaterials
Publikationsverlauf
Received: 14. August 2015
Accepted after revision: 13. Oktober 2015
Publikationsdatum:
03. November 2015 (online)
Abstract
Supramolecular polymers have shown to be powerful scaffolds for tissue engineering applications. Supramolecular biomaterials functionalized with ureidopyrimidinone (UPy) moieties, which dimerize via quadruple hydrogen-bond formation, are eminently suitable for this purpose. The conjugation of the UPy moiety to biologically active peptides ensures adequate integration into the supramolecular UPy polymer matrix. The structural complexity of UPy–peptide conjugates makes their synthesis challenging and until recently low yielding, thus restricted the access to structurally diverse derivatives. Here we report optimization studies of a convergent solid-phase based synthesis of UPy-modified peptides. The peptide moiety is synthesized using standard Fmoc solid-phase synthesis and the UPy fragment is introduced on the solid-phase simplifying the synthesis and purification of the final UPy–peptide conjugate. The convergent nature of the synthesis reduces the number of synthetic steps in the longest linear sequence compared to other synthetic approaches. We demonstrate the utility of the optimized route by synthesizing a diverse range of biologically active UPy–peptide bioconjugates in multimilligram scale for diverse biomaterial applications.
1 Introduction
2 Divergent Synthesis
3 Convergent Synthesis
4 UPy–Amine Strategy
5 UPy–Carboxylic Acid Strategy
6 Conclusion
Key words
modular approach - quadruple hydrogen bonding - peptides - solid phase - biofunctionalization - bioactive materialsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560520.
- Supporting Information
-
References and Notes
- 1 These authors contributed equally.
- 2 These authors contributed equally.
- 3 Vacanti CA. Tissue Eng. 2006; 12: 1137
- 4 Place ES, Evans ND, Stevens MM. Nat. Mater. 2009; 8: 457
- 5 Lutolf MP, Hubbell JA. Nat. Biotechnol. 2005; 23: 47
- 6 Shin H, Jo S, Mikos AG. Biomaterials 2003; 24: 4353
- 7 Nimmo CM, Owen SC, Shoichet MS. Biomacromolecules 2011; 12: 824
- 8 Moreira Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Biomaterials 2012; 33: 1281
- 9 Balakrishnan B, Banerjee R. Chem. Rev. 2011; 111: 4453
- 10 Sun J.-Y, Zhao X, Illeperuma WR, Chaudhuri OhO. K. H, Mooney DJ, Vlassak JJ, Suo Z. Nature (London, U.K.) 2012; 489: 133
- 11 Mollet BB, Comellas-Aragonès M, Spiering AJ. H, Söntjens SH. M, Meijer EW, Dankers PY. W. J. Mater. Chem. B 2014; 2: 2483
- 12 van Bommel KJ. C, van der Pol C, Muizebelt I, Friggeri A, Heeres A, Meetsma A, Feringa BL, van Esch J. Angew. Chem. Int. Ed. 2004; 43: 1663
- 13 Ni JLi X, Leong KW. J. Biomed. Mater. Res., Part A 2003; 65: 196
- 14 Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D’Souza RN. Tissue Eng., Part A 2012; 18: 176
- 15 Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Gough JE. Biomaterials 2009; 30: 2523
- 16 Hartgerink JD, Beniash E, Stupp SI. Science 2001; 294: 1684
- 17 Zhang S. Nat. Biotechnol. 2003; 21: 1171
- 18 Besenius P, Goedegebure Y, Driesse M, Koay M, Bomans PH. H, Palmans AR. A, Dankers PY. W, Meijer EW. Soft Matter 2011; 7: 7980
- 19 Preslar AT, Parigi G, McClendon MT, Sefick SS, Moyer TJ, Haney CR, Waters EA, MacRenaris KW, Luchinat C, Stupp SI, Meade TJ. ACS Nano 2014; 8: 7325
- 20 Dankers PY. W, Harmsen MC, Brouwer LA, Van Luyn MJ. A, Meijer EW. Nat. Mater. 2005; 4: 568
- 21 Bakota EL, Wang Y, Danesh FR, Hartgerink JD. Biomacromolecules 2011; 12: 1651
- 22 Pollino JM, Weck M. Chem. Soc. Rev. 2005; 34: 193
- 23 You C.-C, Verma A, Rotello VM. Soft Matter 2006; 2: 190
- 24 Stephanopoulos N, Ortony JH, Stupp SI. Acta Mater. 2013; 61: 912
- 25 Tran NQ, Joung YK, Lih E, Park KM, Park KD. Biomacromolecules 2010; 11: 617
- 26 Bastings MM. C, Koudstaal S, Kieltyka RE, Nakano Y, Pape AC. H, Feyen DA. M, van Slochteren FJ, Doevendans PA, Sluijter JP. G, Meijer EW, Chamuleau SA. J, Dankers PY. W. Adv. Healthcare Mater. 2014; 3: 70
- 27 Dankers PY. W, Boomker JM, Huizinga-van der Vlag A, Wisse E, Appel WP. J, Smedts FM. M, Harmsen MC, Bosman AW, Meijer W, van Luyn MJ. A. Biomaterials 2011; 32: 723
- 28 Folmer BJ. B, Sijbesma RP, Versteegen RM, van der Rijt JA. J, Meijer EW. Adv. Mater. 2000; 12: 874
- 29 Dankers PY. W, Adams PJ. H. M, Löwik DW. P. M, van Hest JC. M, Meijer EW. Eur. J. Org. Chem. 2007; 3622
- 30 Kieltyka RE, Bastings MM. C, van Almen GC, Besenius P, Kemps EW. L, Dankers PY. W. Chem. Commun. 2012; 48: 1452
- 31 Merrifield RB. J. Am. Chem. Soc. 1963; 85: 2149
- 32 Jensen KJ, Shelton PT, Pedersen SL. Peptide Synthesis and Applications . Springer; New York: 2013
- 33 Miyamoto S, Akiyama SK, Yamada KM. Science 1995; 267: 883
- 34 Salber J, Gräter S, Harwardt M, Hofmann M, Klee D, Dujic J, Jinghuan H, Ding J, Kippenberger S, Bernd A, Groll J, Spatz JP, Möller M. Small 2007; 3: 1023
- 35 Mizuno M, Fujisawa R, Kuboki Y. J. Cell. Physiol. 2000; 184: 207
- 36 Geiger T, Clarke S. J. Biol. Chem. 1987; 262: 785
- 37 Stephenson RC, Clarke S. J. Biol. Chem. 1989; 264: 6164
- 38 General Experimental Procedure for the Coupling of the Carboxylic Acid Terminated UPy Building Block to the Peptide Using HATU (Solid Phase) Rink amide resin (ca. 100, μmol) with the attached peptide was allowed to swell in N,N-dimethylacetamide (DMAc) for 3 h, rinsed with DMAc and combined with a solution of carboxylic acid terminated UPy building block (0.15 mmol), DIPEA (0.3 mmol), and HATU (0.13 mmol) in DMAc that was preactivated for 30 min. The resin was agitated in the reaction mixture for 90 min, rinsed with DMAc (7 × 2 mL), rinsed with CH2Cl2 (5 × 2 mL), and dried in vacuo. After a test cleavage showed complete conversion to 19b the resin was stirred in 5 mL cleavage mixture (TFA–H2O–TIS, 95:2.5:2.5 v/v) for 2 h. The resulting solution was collected, and the resin was washed with the cleavage mixture (2 × 2.5 mL) and CH2Cl2 (2 × 2.5 mL). The collected organic phases were reduced to 4 mL by gently blowing Ar over the solution. The resulting mixture was precipitated in 50 mL ice-cold Et2O resulting in a white precipitate that was collected by centrifugation and dried. The product was purified using preparative RP-HPLC-MS on a C18 column using a gradient of MeCN in H2O, containing 0.1% formic acid.
- 39 Pritz S, Wolf Y, Klemm C, Bienert M. Tetrahedron Lett. 2006; 47: 5893
- 40 Wan Z.-K, Binnun E, Wilson DP, Lee J. Org. Lett. 2005; 7: 5877