Synlett 2016; 27(01): 51-56
DOI: 10.1055/s-0035-1560526
letter
© Georg Thieme Verlag Stuttgart · New York

A New Simplified Protocol for Copper(I) Alkyne–Azide Cycloaddition Reactions Using Low Substoichiometric Amounts of Copper(II) Precatalysts in Methanol

Benjamin R. Buckley
Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK   Email: b.r.buckley@lboro.ac.uk   Email: m.m.pardo-figueres@lboro.ac.uk   Email: amnankhan@gmail.com   Email: h.heaney@lboro.ac.uk
,
Maria M. P. Figueres
Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK   Email: b.r.buckley@lboro.ac.uk   Email: m.m.pardo-figueres@lboro.ac.uk   Email: amnankhan@gmail.com   Email: h.heaney@lboro.ac.uk
,
Amna N. Khan
Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK   Email: b.r.buckley@lboro.ac.uk   Email: m.m.pardo-figueres@lboro.ac.uk   Email: amnankhan@gmail.com   Email: h.heaney@lboro.ac.uk
,
Harry Heaney*
Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK   Email: b.r.buckley@lboro.ac.uk   Email: m.m.pardo-figueres@lboro.ac.uk   Email: amnankhan@gmail.com   Email: h.heaney@lboro.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 25 September 2015

Accepted: 16 October 2015

Publication Date:
11 November 2015 (online)


Dedicated to Professor Steven V. Ley FRS for his excellent achievements in organic chemistry on the occasion of his 70th birthday

Abstract

Copper(II) carboxylates are reduced efficiently by methanol in the presence of alkynes and form yellow alkynylcopper(I) polymeric precatalysts that are involved with azides, in the absence of added ligands, in the catalytic cycles that result in the formation of 1,4-disubstituted 1,2,3-triazoles.

Supporting Information

 
  • References

    • 1a Tornøe CW, Meldal M. Peptidotriazoles: Copper(I)-Catalysed 1,3-Dipolar Cycloadditions on Solid Phase . In Peptides: Proceedings of the American Peptide Symposium. American Peptide Society and Kluwer Academic Publishers; San Diego: 2001: 263
    • 1b Meldal M, Tornøe CW. J. Org. Chem. 2002; 67: 3057
    • 1c Rostovsev VV, Fokin VV, Green LG, Sharpless KB. Angew Chem. 2002; 114: 2708
  • 7 Yousuf SK, Mukherjee D, Singh B, Maity S, Taneja SC. Green Chem. 2010; 12: 1568
  • 8 Wang K, Bi X, Liao P, Fang Z, Meng X, Zhang Q, Liu Q, Ji Y. Green Chem. 2011; 13: 562
  • 11 Buckley BR, Butterworth R, Dann SE, Heaney H, Stubbs EC. ACS Catal. 2015; 5: 793
  • 13 Kirai N, Yamamoto Y. Eur. J. Org. Chem. 2009; 1864
  • 14 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
  • 15 Harmand L, Lescure M.-H, Candelon N, Duttine M, Lastécouères D, Vincent JM. Tetrahedron Lett. 2012; 53: 1417
  • 16 Alonso F, Moglie Y, Radivoy G, Yus M. Synlett 2012; 23: 2179

    • For some earlier methods of preparation, see for example:
    • 17a Sazonova VA, Kronrod NY. Zh. Obshch. Khim. 1956; 26: 1876 ; Chem. Abstr. 1957, 51, 4981c
    • 17b Castro CE, Stephens RD. J. Org. Chem. 1963; 28: 2163
    • 17c Stephens RD, Castro CE. J. Org. Chem. 1963; 28: 3313
    • 17d Owsley DC, Castro CE. Org. Synth., Coll. Vol. VI 1988; 916
    • 17e Atkinson RE, Curtis RF, Taylor JA. J. Chem. Soc. C 1967; 578
    • 17f Ito H, Arimoto K, Sensui H.-o, Hosomi A. Tetrahedron Lett. 1997; 38: 3977

      Glaser reaction products have been observed previously when using Cu(II) salts in the absence of a reducing agent. See:
    • 18a Kamata K, Kotani M, Yamaguchi K, Mizono N. Angew Chem. Int. Ed. 2008; 47: 2407
    • 18b Kamata K, Nakagawa Y, Tamaguchi K, Mizono N. J. Am. Chem. Soc. 2008; 130: 15304
  • 19 Bistriazole Prepared from 1,7-Octadiyne and Benzyl Azide 20 Benzyl azide (0.15 g, 1.1 mmol) and 1,7-octadiyne (0.053 g, 0.5 mmol) were added to a 3 mL vial containing MeOH (2 mL) which was fitted with a magnetic stirrer bar. Copper(II) acetate mono-hydrate was added (1 mg, 0.005 mmol, 0.1 mL from a stock solution in MeOH containing 10 mg/mL), and the vial was closed. The reaction mixture was then stirred and heated at 50 °C for 4 h on a stirrer hotplate fitted with an aluminium vial holder and allowed to cool. The colourless precipitate was filtered, washed with cold MeOH (2 × 5 mL), Et2O (5 mL), and allowed to dry in air to give colourless crystals (0.13 g, 72%); mp 156–158 °C. 1H NMR (400 MHz, CDCl3): δ = 7.35–7.34 (6 H, m), 7.26–7.22 (4 H, m), 7.17 (2H, s), 5.47 (4 H, s), 2.72–2.68 (4 H, m), 1.72–1.69 (4 H, m) ppm. 13C NMR (100 MHz, CDCl3): δ  = 148.7, 135.2, 129.3, 128.8, 128.2, 120.9, 54.2, 29.1, 25.7 ppm. HRMS: m/z calcd for C22H24N6Na [M + Na]: 395.1960; found: 3955.1959.
  • 20 Saha S, Kaur M, Bera JK. Organometallics 2015; 34: 3047
  • 21 Bistriazole Prepared from 1,8-Nonadiyne and Benzyl Azide 22 A similar reaction gave colourless crystals (0.13 g, 69%); mp 121–123 °C. 1H NMR (400 MHz, CDCl3): δ = 7.37–7.35 (6 H, m), 7.26–7.22 (4 H, m), 7.17 (2 H, s), 5.48 (4 H, s), 2.67 (4 H, t, J = 9.6 Hz), 1.71–1.60 (4 H, m), 1.40–1.37 (2 H, m) ppm. 13C NMR (100 MHz, CDCl3): δ = 148.9, 135.2, 129.3, 128.8, 128.2, 120.8, 54.2, 29.3, 28.9, 25.8 ppm. HRMS: m/z calcd for C23H26N6Na [M + Na]: 409.2117; found: 409.2113.
  • 22 Smith CD, Baxendale IR, Lanners S, Hayward JJ, Smith SC, Ley SV. Org. Biomol. Chem. 2007; 5: 1559
  • 23 Triazole Prepared from p-Tolylethyne and 3-Trifluoromethylbenzyl Azide (Table 2, Entry 2) 3-Trifluoromethylbenzyl azide (0.34 g, 1.7 mmol) and p-tolyl­ethyne (0.30 g, 2.6 mmol) were added to a microwave tube (5 mL) fitted with a magnetic stirrer bar. Copper (II) acetate monohydrate (3.4 mg, 0.017 mmol) was added and the mixture suspended in MeOH (5 mL). The reaction mixture was then heated in the microwave apparatus at 100 °C for 20 min and allowed to cool. The reaction mixture was added to EtOAc (50 mL) and H2O (50 mL), separated, and the aqueous layer extracted with EtOAc (2 × 50 mL). The EtOAc layers were evaporated under reduced pressure to give an off-white solid which after recystallisation from Et2O gave the product as colourless crystals (0.53g, 98%); mp 128–130 °C. IR: νmax = 3135, 2982, 1665, 1448, 1386 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.74–7.72 (3 H, m), 7.66–7.61 (2 H, m), 7.55–7.48 (2 H, m), 7.25 (2 H, d, J = 7.6 Hz), 5.65 (2 H, s), 2.39 (3 H, s) ppm. 13C NMR (100 MHz, CDCl3): δ = 148.6, 138.2, 135.8, 131.5 (q, J = 32.2 Hz), 131.3, 129.8, 129.6, 127.4, 125.67 (q), 125.62, 124.7 (q, J = 3.7 Hz), 123.5 (q, J = 271.2 Hz), 122.3, 119.6, 119.2, 53.6, 21.4 ppm. HRMS: m/z calcd for C15H24N3F3Na [M + Na]: 340.1032; found: 340.1040.
  • 25 Poh J.-S, Tran DN, Battilocchio C, Hawkins JM, Ley SV. Angew Chem. Int. Ed. 2015; 54: 7920