Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(20): 2784-2788
DOI: 10.1055/s-0035-1560531
DOI: 10.1055/s-0035-1560531
cluster
Nickel-Catalyzed Regioselective Reductive Cross-Coupling of Aryl Halides with Polysubstituted Allyl Halides in the Presence of Imidazolium Salts
Further Information
Publication History
Received: 21 September 2015
Accepted after revision: 26 October 2015
Publication Date:
13 November 2015 (online)
Abstract
The nickel-catalyzed direct reductive cross-coupling of aryl halides with readily accessible polysubstituted allyl halides provides an efficient method for preparing diverse allylated arenes under mild conditions. Both allyl bromides and allyl chlorides are compatible with the transformation.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560531.
- Supporting Information
-
References
- 1a Manitto P. Biosynthesis of Natural Products . Ellis Horwood; Chichester: 1981
- 1b Hayes’ Handbook of Pesticide Toxicology . 3rd ed. Kreiger R. I., Elsevier/Academic Press; Amsterdam: 2010
- 1c The Art of Drug Synthesis . Johnson DS, Li JJ. Wiley-Interscience; Hoboken: 2007
- 1d Ritter JJ, Kalish J. J. Am. Chem. Soc. 1948; 70: 4048
- 2a Sun SG, Chen RY, Yu DQ. J. Asian Nat. Prod. Res. 2001; 3: 253
- 2b Du J, He Z.-D, Jang R.-W, Ye W.-C, Xu H.-X, But PP.-H. Phytochemistry 2003; 62: 1235
- 2c Sohn H.-Y, Son KH, Kwon C.-S, Kwon G.-S, Kang SS. Phytomedicine 2004; 11: 666
- 2d Botta B, Delle Monache G, Menendez P, Boffi A. Trends Pharmacol. Sci. 2005; 26: 606
- 2e Botta B, Vitali A, Menendez P, Misiti D, Delle Monache G. Curr. Med. Chem. 2005; 12: 717
- 3 Farmer JL, Hunter HN, Organ MG. J. Am. Chem. Soc. 2012; 134: 17470
- 4 Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642
- 5 Yang Y, Mustard TJ. L, Cheong PH.-Y, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 14098
- 6a Dutheuil G, Selander N, Szabó KJ, Aggarwal VK. Synthesis 2008; 2293
- 6b Raducan M, Alam R, Szabó KJ. Angew. Chem. Int. Ed. 2012; 51: 13050
- 6c Gerbino DC, Mandolesi SD, Schmalz H.-G, Podestá JC. Eur. J. Org. Chem. 2009; 3964
- 6d Krasovskiy A, Malakhov V, Gavryushin A, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 6040
- 6e Ren H, Dunet G, Mayer P, Knochel P. J. Am. Chem. Soc. 2007; 129: 5376
- 7a Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 7b Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
-
8a Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
- 8b Hu X. Chem. Sci. 2011; 2: 1867
- 8c Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
-
8d Xue W, Xu H, Liang Z, Qian Q, Gong H. Org. Lett. 2014; 16: 4984
- 8e Liang Z, Xue W, Lin K, Gong H. Org. Lett. 2014; 16: 5620
- 8f Xu H, Zhao C, Qian Q, Deng W, Gong H. Chem. Sci. 2013; 4: 4022
- 8g Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
- 8h Molander GA, Traister KM, O’Neill BT. J. Org. Chem. 2014; 79: 5771
- 8i Zhao C, Jia X, Wang X, Gong H. J. Am. Chem. Soc. 2014; 136: 17645
- 9a Wang S, Qian Q, Gong H. Org. Lett. 2012; 14: 3352
- 9b Cui X, Wang S, Zhang Y, Deng W, Qian Q, Gong H. Org. Biomol. Chem. 2013; 11: 3094
- 9c Anka-Lufford LL, Prinsell MR, Weix DJ. J. Org. Chem. 2012; 77: 9989
-
10a Durandetti M, Nédélec J.-Y, Périchon J. J. Org. Chem. 1996; 61: 1748
- 10b Dai Y, Wu F, Zang Z, You H, Gong H. Chem. Eur. J. 2012; 18: 808
- 10c Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
- 10d Qian X, Auffrant A, Felouat A, Gosimini C. Angew. Chem. Int. Ed. 2011; 50: 10402
- 11 Xu L, Liu Z, Dong W, Song J, Miao M, Xu J, Ren H. Org. Biomol. Chem. 2015; 13: 6333
- 12a Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
- 12b Würtz S, Glorius F. Acc. Chem. Res. 2008; 41: 1523
- 13 2-(3-Methylbut-2-en-1-yl)biphenyl (3b); Typical Example A dry, N2-flushed, 25 mL Schlenk tube equipped with a magnetic stirrer was charged with Mg (3.5 mmol, 3.5 equiv) and anhyd LiCl (3 mmol, 3.0 equiv), which were covered with anhyd THF (3 mL) and activated by the addition of a few drops of TMSCl. The mixture was stirred for 30 min, then ligand L1 (0.1 mmol, 0.1 equiv) and NiI2 (0.05 mmol, 0.05 equiv) were added, and the mixture was stirred at 0 °C. A solution of 4-bromobiphenyl (1b; 1.0 mmol, 1.0 equiv) and bromide 2a (3.0 mmol, 3.0 equiv) in THF (2 mL) was slowly added from a syringe pump at 0 °C (flow rate: 3 mL/h). The resulting mixture was stirred under N2 at 0 °C for 12 h. Sat. aq NH4Cl (10 mL) was added, and the mixture was extracted with EtOAc (3 × 30 mL). The combined organic fractions were dried (Na2SO4), concentrated in vacuo, and purified by chromatography [silica gel (200–300 mesh), PE] to give a colorless oil; yield: 115 mg (52%); Rf = 0.58 (PE). IR (ATR–FTIR): 2969, 1479, 1047, 738, 700 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.43–7.38 (m, 2 H), 7.36–7.29 (m, 5 H), 7.25–7.21 (m, 2 H), 5.19 (t, J = 7.2 Hz, 1 H), 3.28 (d, J = 7.2 Hz, 2 H), 1.68 (s, 3 H), 1.51 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ = 141.84, 141.76, 139.2, 131.9, 130.0, 129.33, 129.25, 128.0, 127.4, 126.7, 125.7, 123.7, 32.0, 25.7, 17.7. MS (ES+): m/z (%) = 223 (8) [M + H]+, 195 (28), 177 (21), 168 (25), 133 (100), 117 (35), 105 (12). HRMS (ES+–TOF): m/z [M + H]+ calcd for C17H19: 223.1487; found: 223.1474.
- 14a Koeberle A, Muñoz E, Appendino B, Minassi A, Pace S, Rossi A, Weinigel C, Barz D, Sautebin L, Caprioglio D, Collado JA, Werz O. J. Med. Chem. 2014; 57: 5638
- 14b Rosa A, Atzeri A, Deiana M, Melis MP, Incani A, Minassi A, Cabboi B, Appendino G. Food Res. Int. 2014; 57: 225
- 15 Minassi A, Sánchez-Duffhues G, Collado JA, Muñoz E, Appendino G. J. Nat. Prod. 2013; 76: 1105