Synlett 2015; 26(20): 2863-2865
DOI: 10.1055/s-0035-1560647
letter
© Georg Thieme Verlag Stuttgart · New York

2-Hydroxylation of 1,3-Diketones with Atmospheric Oxygen

Zheng Li*
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
,
Tianpeng Li
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
,
Jiasheng Li
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
,
Lili He
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
,
Xianggui Jia
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
,
Jingya Yang
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 July 2015

Accepted after revision: 05 September 2015

Publication Date:
22 September 2015 (online)


Abstract

An efficient method for the 2-hydroxylation of 1,3-diketones by using atmospheric oxygen as an oxidant under transition-metal-free condition is described. The protocol has the advantages of using an inexpensive and stable oxidant, producing high yields, and requiring ecofriendly conditions.

Supporting Information

 
  • References and Notes

    • 1a Christoffers J, Baro A, Werner T. Adv. Synth. Catal. 2004; 346: 143
    • 1b Pritchard DR, Wilden JD. Tetrahedron Lett. 2010; 51: 1819
    • 1c Siliphaivanh P, Harrington P, Witter DJ, Otte K, Tempest P, Kattar S, Kral AM, Fleming JC, Deshmukh SV, Harsch A, Secrist PJ, Miller TA. Bioorg. Med. Chem. Lett. 2007; 17: 4619
    • 2a Asahara H, Nishiwaki N. J. Org. Chem. 2014; 79: 11735
    • 2b Andriamialisoa R, Langlois N, Langlois Y. Tetrahedron Lett. 1985; 26: 3563
    • 3a Adam W, Smerz AK. Tetrahedron 1996; 52: 5799
    • 3b Smith AM. R, Rzepa HS, White AJ. P, Billen D, Hii KK. J. Org. Chem. 2010; 75: 3085
    • 4a Davis FA, Chen BC. Chem. Rev. 1992; 92: 919
    • 4b Davis FA, Liu H, Chen BC, Zhou P. Tetrahedron 1998; 54: 10481
  • 5 Odagi M, Furukori K, Yamamoto Y, Sato M, Iida K, Yamanaka M, Nagasawa K. J. Am. Chem. Soc. 2015; 137: 1909
  • 6 Lu M, Zhu D, Lu Y, Zeng X, Tan B, Xu Z, Zhong G. J. Am. Chem. Soc. 2009; 131: 4562
  • 7 Labat G, Meunier B. J. Chem. Soc., Chem. Commun. 1990; 1414
  • 8 Takikawa H, Takada A, Hikita K, Suzuki K. Angew. Chem. Int. Ed. 2008; 47: 7446
  • 9 Christoffers J. J. Org. Chem. 1999; 64: 7668
  • 10 Rössle M, Christoffers J. Tetrahedron 2009; 65: 10941
  • 11 Chuang GJ, Wang WK, Lee E, Ritter T. J. Am. Chem. Soc. 2011; 133: 1760
  • 12 Miao C.-B, Wang Y.-H, Xing M.-L, Lu X.-W, Sun X.-Q, Yang H.-T. J. Org. Chem. 2013; 78: 11584
  • 13 2-Hydroxy-1,3-diketones 2; General Procedure A mixture of 1,3-diketone 1 (1.0 mmol), KF (0.1 mmol), and NaOH (0.2 mmol) in DMF (4.8 mL) and H2O (0.2 mL) was stirred at 120 °C under air for 12 h. When the reaction was complete (TLC), the mixture was cooled to r.t., diluted with EtOAc, and washed with sat. aq Na2CO3. The resulting organic phase was dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, PE–EtOAc (20:1)]. Analytical data for representative products are given below. 2-Hydroxy-1,3-diphenylpropane-1,3-dione (2a) White solid; yield: 95%; mp 92–94 °C. 1H NMR (600 MHz, CDCl3): δ = 7.99 (d, J = 7.8 Hz, 4 H, ArH), 7.47–7.55 (m, 6 H, ArH), 6.86 (s, 1 H, CH). 13C NMR (150 MHz, CDCl3): δ = 185.7, 135.5, 132.4, 126.7, 127.1, 93.1. Anal. Calcd for C15H12O3: C, 74.99; H, 5.03. Found: C, 74.86; H, 5.05. 1-(2-Furyl)-2-hydroxy-3-phenylpropane-1,3-dione (2n) White solid; yield: 80%; mp 76–78 °C. 1H NMR (600 MHz, CDCl3) δ = 7.96 (d, J = 7.2 Hz, 2 H, ArH), 7.47–7.62 (m, 4 H, ArH and FuH), 7.23–7.27 (m, 2 H, ArH and FuH), 6.77 (s, 1 H, CH). 13C NMR (150 MHz, CDCl3): δ = 182.5, 177.7, 151.0, 146.1, 134.7, 132.4, 128.7, 127.0, 115.8, 112.7, 92.7. Anal. Calcd for C13H10O4: C, 67.82; H, 4.38. Found: C, 67.74; H, 4.39.