Abstract
The synthesis of chiral compounds by means of asymmetric C–H activation is an appealing modern strategy for the straightforward conversion of simple and nonfunctionalized substrates into high-value-added stereogenic molecules. For several years, considerable attention has been focused on the design of enantioselective transformations involving the use of chiral ligands as sources of chirality. In addition, a complementary strategy based on direct functionalization of substrates bearing a chiral element has recently demonstrated its potential. Such diastereoselective transformations can be achieved by incorporating a chiral auxiliary into a directing group (DG). Alternatively, direct functionalization of chiral-pool molecules, such as α-amino acids, provides a valuable synthetic route to novel non-natural amino acid derivatives. The aim of this account is to highlight major achievements in diastereoselective C–H activation. Particular attention will be paid to the contributions of our group in this emerging field.
1 Introduction
2 Directing Group Controlled Diastereoselective C–H Activation
3 Substrate-Controlled Diastereoselective C–H Activation
4 Conclusions
Key words
direct functionalization - asymmetric synthesis - bond activation - diastereoselectivity - chiral auxiliary - directing group