Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(05): 777-781
DOI: 10.1055/s-0035-1561268
DOI: 10.1055/s-0035-1561268
letter
A Highly Efficient Copper-Catalyzed Synthesis of Unsymmetrical Diaryl- and Aryl Alkyl Chalcogenides from Aryl Iodides and Diorganyl Disulfides and Diselenides
Further Information
Publication History
Received: 14 July 2015
Accepted after revision: 02 November 2015
Publication Date:
09 December 2015 (online)
Abstract
An efficient and convenient protocol has been developed for the copper-catalyzed reaction of aryl iodides and diorganyl disulfides and diselenides. A variety of symmetrical and unsymmetrical diaryl- and aryl alkyl chalcogenides were synthesized with good functional group tolerance and chemoselectivity by using copper(Ι) iodide as a catalyst, 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine as ligand, and KOH as base under an inert atmosphere.
Key words
cross-coupling - diaryl chalcogenides - copper-catalyzed reaction - aryl halides - dichalcogenidesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561268.
- Supporting Information
-
References and Notes
- 1a Trost BM, Fleming Ι. Comprehensive Organic Synthesis . Vol. 6. Pergamon Press; New York: 1991
- 1b Petraghani N In Tellurium in Organic Synthesis . Katritzky AR, Meth-Cohn O, Rees CW. Academic Press; San Diego: 1994
- 1c Paulmier CI In Selenium Reagents and Intermediates in Organic Synthesis: Organic Chemistry Series 4. Baldwin JE. Pergamon Press; Oxford: 1986
- 1d Comasseto JV, Barientos-Astigarraga RE. Aldrichimica Acta 2000; 33: 66
- 1e Thuillier A In Sulfur Reagents in Organic Synthesis . Katritzky AR, Meth-Cohn O, Rees CW. Academic Press; San Diego: 1994
- 2a Patai S, Rappoport Z. The Chemistry of Organic Selenium and Tellurium Compounds . Vol. 1. Wiley; New York: 1986
- 2b Naddaka VI, Sadekov ID, Maksimenko AA, Minkin VI. Sulfur Rep. 1988; 8: 61
- 2c Nicolaou K. Tetrahedron 1981; 37: 4097
- 3a Sarma BK, Mugesh G. Org. Biomol. Chem. 2008; 6: 965
- 3b Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 3c Bonnet B, Soullez D, Girault S, Maes L, Landry V, Davioud-Charret E, Sergheraert C. Bioorg. Med. Chem. 2000; 8: 95
- 3d Liu G, Link JT, Pei Z, Reilly EB, Leitza S, Nguyen B, Marsh KC, Okasinsk GF, Geldern TW. V, Ormes M, Fowler K, Gallatin M. J. Med. Chem. 2000; 43: 4025
- 3e Wang YG, Chackalamannil S, Chang W, Greenlee W, Ruperto V, Duffy RA, McQuade R, Lachowicz JE. Bioorg. Med. Chem. Lett. 2001; 11: 891
- 4a Krief A In Comprehensive Organometallic Chemistry ΙΙ . Vol. 11; Chap. 13. Abel EW, Stone FG. A, Wilkinson G. Pergamon Press; New York: 1995
- 4b Miyaura N In Metal Catalyzed Cross-Coupling Reactions . Vol. 1. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004: 41-123
- 4c Zeni G, Ludtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032
- 4d Perin G, Lenardao EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
- 5a Gujadhur RK, Venkataraman V. Tetrahedron Lett. 2003; 44: 81
- 5b Kwong FW, Buchwald SL. Org. Lett. 2002; 4: 3517
- 5c Suzuki H, Abe H, Osuka A. Chem. Lett. 1981; 151
- 5d Li Y, Li X, Wang H, Chen T, Xie Y. Synthesis 2010; 3602
- 5e Mondal J, Modak A, Dutta A, Bhaumik A. Dalton Trans. 2011; 5228
- 6a Movassagh B, Takallou A, Mobaraki A. J. Mol. Catal. A: Chem. 2015; 401: 55
- 6b Itoh T, Mase T. Org. Lett. 2004; 6: 4587
- 6c Nishiyama Y, Tokunaga K, Sonada N. Org. Lett. 1999; 1: 1725
- 6d Correa A, Carril M, Balm C. Angew. Chem. Int. Ed. 2008; 47: 2880
- 7a Jammi S, Baruna P, Rout L, Saha P, Punniyamurty T. Tetrahedron Lett. 2008; 44: 1484
- 7b Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
- 8 Eichmann CC, Stambuli JP. J. Org. Chem. 2009; 74: 4005
- 9a Wang H, Jiang L, Chen T, Li Y. Eur. J. Org. Chem. 2010; 2324
- 9b Chatterjee T, Ranu BC. J. Org. Chem. 2013; 78: 7145
- 9c Li Y, Wang H, Li X, Chen T, Zhao D. Tetrahedron 2010; 66: 8583
- 9d Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 951
- 9e Singh D, Alberto EE, Rodrigues OE. D, Braga AL. Green Chem. 2009; 11: 1521
- 9f Taniguchi N, Onami T. J. Org. Chem. 2004; 69: 915
- 9g Kumar S, Engman L. J. Org. Chem. 2006; 71: 5400
- 9h Kumar A, Bhakuni BS, Prasad ChD, Kumar Sh, Kumar S. Tetrahedron 2013; 69: 5383
- 10 Kundu D, Ahammed S, Ranu BC. Green Chem. 2012; 14: 2024
- 11a Kumar A, Kumar S. Tetrahedron 2014; 70: 1763
- 11b Wang M, Ren K, Wang L. Adv. Synth. Catal. 2009; 351: 1568
- 11c Zheng B, Gong Y, Xu H.-J. Tetrahedron 2013; 69: 5342
- 12 Li Y, Nie C, Wang H, Li X, Verpoort F, Duan C. Eur. J. Org. Chem. 2011; 7331
- 13 Prasad ChD, Balkrishna SJ, Kumar A, Bhakuni BS, Shrimali K, Biswas S, Kumar S. J. Org. Chem. 2013; 78: 1434
- 14a Joshi-Pangu A, Ganesh M, Biscoe MR. Org. Lett. 2011; 13: 1218
- 14b Gong H, Gagne MR. J. Am. Chem. Soc. 2008; 130: 12177
- 14c Aoyama N, Hamada T, Manabe K, Kobayashi S. J. Org. Chem. 2003; 68: 7329
- 15 Zhao LX, Moon YS, Basnet A, Kim E.-K, Jahng Y, Park JG, Jeong TC, Cho W.-J, Choi S.-U, Lee S.-Y, Lee C.-S, Lee ES. Bioorg. Med. Chem. Lett. 2004; 14: 1333
- 16 Wild A, Winter A, Schlütter F, Schubert US. Chem. Soc. Rev. 2011; 40: 1459
- 17 Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC. Nature (London) 2002; 417: 722
- 18 Winter A, Hager MD, Newkome GR, Schubert US. Adv. Mater. 2011; 23: 5728
- 19 Movassagh B, Yousefi A, Momeni BZ, Heydari S. Synlett 2014; 1385
- 20 Wang J, Hanan GS. Synlett 2005; 1251
- 21 General procedure for the preparation of diorgano chalcogenides: A flame-dried test tube containing a magnetic stirring bar was charged with diorgano dichalcogenide (0.5 mmol), aryl halide (1.0 mmol), KOH (1.0 mmol), and anhydrous DMSO (2 mL) [for aryl bromides or chlorides, TBAB (1.0 mmol) was also added]. Then, CuI (10 mol%) and Mtpy (10 mol%) were added to the above mixture, and the reaction mixture was heated at 110 °C under nitrogen. The progress of the reaction was monitored by TLC. Upon completion of the reaction, the mixture was cooled to r.t., poured into H2O (10 mL), and extracted with EtOAc (3 × 8 mL). The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to give the crude product, which was further purified by preparative TLC (silica gel; n-hexane–EtOAc, 9:1). The identities of the products were confirmed by IR, 1H and 13C NMR spectroscopic analysis.
- 22 Haldón E, Álvarez E, Nicasio MC, Pérez P. Organometallics 2009; 28: 3815
- 23 Xu H.-J, Zhao X.-Y, Deng J, Fu Y, Feng Y.-S. Tetrahedron Lett. 2009; 50: 434
- 24a Yang F, Huifeng W, Fangfang S, Yaming L, Xinmei F, Kun J. Tetrahedron 2009; 65: 9737
- 24b Fernandez-Rodriguez MA, Hartwig JF. J. Org. Chem. 2009; 74: 1664
- 24c Zhang J, Medley CM, Krause JA, Guan H. Organometallics 2010; 29: 6393
- 24d Sang BL, Jong-In H. Tetrahedron Lett. 1995; 36: 8439
- 24e Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 951. Di-p-tolyl Sulfide White solid; mp 55–57 °C; 1H NMR (300 MHz, CDCl3): δ = 7.30 (d, J = 8.4 Hz, 4 H), 7.16 (d, J = 8.4 Hz, 4 H), 2.38 (s, 6 H); 13C NMR (75.5 MHz, CDCl3): δ = 136.9, 132.7, 131.1, 130.0, 21.1. 4-Methoxyphenyl Phenyl Sulfide Colorless oil; 1H NMR (300 MHz, CDCl3): δ = 7.49 (dt, J = 6.9, 1.8 Hz, 2 H), 7.19–7.29 (m, 5 H), 6.96 (dt, J = 6.9, 1.8 Hz, 2 H), 3.85 (s, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 159.8, 138.6, 135.3, 128.9, 128.2, 125.7, 124.3, 115.0, 55.3. Naphthalen-2-yl p-Tolyl Sulfide White solid; mp 69–71 °C; 1H NMR (300 MHz, CDCl3): δ = 7.75–7.86 (m, 4 H), 7.41–7.52 (m, 5 H), 7.21 (d, J = 9.0 Hz, 2 H), 2.42 (s, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 137.6, 134.3, 133.7, 132.1, 132.0, 131.4, 130.1, 128.7, 128.3, 127.9, 127.7, 127.3, 126.5, 125.9, 21.1. 4-Methoxyphenyl Octyl Sulfide Colorless oil; 1H NMR (300 MHz, CDCl3): δ = 7.34 (dt, J = 9.9, 2.1 Hz, 2 H), 6.85 (dt, J = 9.9, 2.1 Hz, 2 H), 3.80 (s, 3 H), 2.82 (t, J = 6 Hz, 3 H), 1.54–1.63 (m, 2 H), 1.27–1.41 (m, 12 H), 0.88 (t, J = 6 Hz, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 158.6, 132.8, 126.9, 114.4, 55.2, 35.7, 31.7, 29.3, 29.14, 29.11, 28.6, 22.6, 14.0. 1-[4-(Phenylthio)phenyl]ethanone Yellow solid; mp 62–64 °C; 1H NMR (300 MHz, CDCl3): δ = 7.82 (d, J = 8.4 Hz, 2 H), 7.48–7.50 (m, 2 H), 7.39–7.41 (m, 3 H), 7.21 (d, J = 8.4 Hz, 2 H), 2.55 (s, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 197.1, 144.9, 134.4, 133.9, 132.0, 129.7, 128.9, 128.8, 127.4, 26.5. 4-Cyanophenyl Phenyl Sulfide Colorless oil; 1H NMR (300 MHz, CDCl3): δ = 7.58–7.64 (m, 4 H), 7.50–7.26 (m, 5 H); 13C NMR (75.5 MHz, CDCl3): δ = 141.1, 139.5, 133.4, 129.7, 128.7, 127.2, 127.1, 118.0, 110.8. 4-Chlorophenyl p-Tolyl Sulfide White solid; mp 69–70 °C; 1H NMR (300 MHz, CDCl3): δ = 7.33 (d, J = 8.2 Hz, 2 H), 7.17–7.24 (m, 6 H), 2.35 (s, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 138.0, 136.0, 132.5, 132.3, 130.8, 130.7, 130.2, 129.1, 21.2. 2-(Butylthio)thiophene Colorless oil; 1H NMR (300 MHz, CDCl3): δ = 7.20–7.29 (m, 3 H), 2.82 (t, J = 6.0 Hz, 2 H), 1.27–1.34 (m, 4 H), 0.84–0.91 (m, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 139.9, 132.9, 129.5, 127.8, 53.3, 34.2, 22.4, 13.9. Diphenyl Sulfide Colorless oil; 1H NMR (400 MHz, CDCl3): δ = 7.40 (d, J = 8.0 Hz, 4 H), 7.35 (t, J = 8.0 Hz, 4 H), 7.30 (t, J = 8.0 Hz, 2 H); 13C NMR (100.6 MHz, CDCl3): δ = 135.9, 131.1, 129.3, 127.1. Naphthalen-2-yl Phenyl Sulfide White solid; mp 63–65 °C; 1H NMR (300 MHz, CDCl3): δ = 7.91 (s, 1 H), 7.77–7.83 (m, 3 H), 7.43–7.53 (m, 5 H), 7.27–7.37 (m, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 135.9, 133.8, 133.0, 132.3, 131.0, 129.9, 129.3, 128.9, 128.8, 127.8, 127.4, 127.1, 126.6, 126.2. Benzyl Phenyl Sulfide White solid; mp 53–55 °C; 1H NMR (300 MHz, CDCl3): δ = 7.24–7.40 (m, 10 H), 4.18 (s, 2 H); 13C NMR (75.5 MHz, CDCl3): δ = 137.5, 136.4, 129.8, 128.9, 128.5, 127.2, 126.3, 36.0. 4-Bromophenyl Phenyl Sulfide Colorless oil; 1H NMR (300 MHz, CDCl3): δ = 7.60 (dt, J = 6.0, 2.7 Hz, 1 H), 7.24–7.44 (m, 6 H), 7.19 (dt, J = 6.0, 2.7 Hz, 1 H), 7.05 (dt, J = 6.0, 2.7 Hz, 1 H); 13C NMR (75.5 MHz, CDCl3): δ = 135.4, 134.7, 133.0, 131.9, 131.7, 129.3, 127.6, 120.8. Phenyl o-Tolyl Sulfide Colorless oil; 1H NMR (400 MHz, CDCl3): δ = 7.28–7.54 (m, 5 H), 7.26 (d, J = 8.0 Hz, 3 H), 7.19 (t, J = 8.0 Hz, 1 H), 2.43 (s, 3 H); 13C NMR (100.6 MHz, CDCl3): δ = 140.0, 136.2, 133.8, 133.1, 131.1, 130.7, 129.7, 129.3, 126.8, 126.4, 20.7. 4-Methylphenyl Phenyl Sulfide Colorless oil; 1H NMR (300 MHz, CDCl3): δ = 7.41–7.43 (m, 5 H), 7.20–7.32 (m, 4 H), 2.42 (s, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 137.61, 137.2, 132.3, 131.3, 130.1, 129.8, 129.0, 126.4, 21.1. 4-Methoxyphenyl Phenyl Selenide Yellow oil; 1H NMR (300 MHz, CDCl3): δ = 7.55 (dd, J = 6.9, 2.1 Hz, 2 H), 7.39 (dd, J = 7.38, 1.4 Hz, 2 H), 7.21–7.29 (m, 3 H), 6.90 (dd, J = 6.9, 2.1 Hz, 2 H), 3.84 (s, 3 H); 13C NMR (75.5 MHz, CDCl3): δ = 159.8, 136.6, 133.2, 130.9, 129.2, 126.4, 119.9, 115.1, 55.3. 2-Methoxyphenyl Phenyl Selenide Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.27–7.70 (m, 5 H), 7.08–7.10 (m, 1 H), 6.88–6.95 (m, 3 H), 3.95 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ = 157.1, 135.9, 131.3, 130.0, 128.8, 128.6, 128.3, 122.4, 122.1, 110.9, 56.4. 4-Methylphenyl Phenyl Selenide Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 7.6 Hz, 4 H), 7.36 (d, J = 6.4 Hz, 3 H), 7.23 (d, J = 7.6 Hz, 2 H), 2.46 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ = 138.2, 134.5, 134.4, 132.5, 132.6, 130.7, 129.8, 127.4, 21.7. 4-Chlorophenyl Phenyl Selenide Yellow oil; 1H NMR (500 MHz, CDCl3): δ = 7.55–7.79 (m, 4 H), 7.17–7.37 (m, 5 H); 13C NMR (125 MHz, CDCl3): δ = 134.8, 134.6, 134.0, 133.7, 131.2, 130.0, 129.9, 128.1.