RSS-Feed abonnieren
DOI: 10.1055/s-0035-1561309
Silica-Grafted Basic Amino Acids as Environmentally Benign Catalysts for the Solventless Synthesis of Cyclic Carbonates from Epoxides and CO2 under Metal-Free and Halide-Free Conditions
Publikationsverlauf
Received: 01. November 2015
Accepted after revision: 06. Dezember 2015
Publikationsdatum:
08. Januar 2016 (online)
Abstract
A series of basic amino acids immobilized onto solid supports that can play cooperative roles was developed and applied as environmentally benign catalytic systems for the solventless synthesis of cyclic carbonates from epoxides and carbon dioxide under metal-free and halide-free conditions. The highest yield of styrene carbonate was achieved with silica supported l-histidine, associated with the acidic nature of silica: Si–OH groups on the silica surface act as a weak acid to activate the epoxide for the synergetic effect with the basic amino acid. The influence of various reaction parameters on catalytic activity was investigated. Moreover, the catalyst exhibited good recyclability.
-
References and Notes
- 1a Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
- 1b Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE. Energy Environ. Sci. 2012; 5: 7281
- 1c He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620
- 2 Zevenhoven R, Eloneva S, Teir S. Catal. Today 2006; 115: 73
- 3 Sakakura T, Kohno K. Chem. Commun. 2009; 11: 1312
- 4 North M, Pasquale R, Young C. Green Chem. 2010; 12: 1514
- 5 Aresta M, Dibenedetto A. Dalton Trans. 2007; 28: 2975
- 6 Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S. Green Chem. 2003; 5: 497
- 7 Mikkelsen M, Jørgensen M, Krebs FC. Energy Environ. Sci. 2010; 3: 43
- 8 Sakai T, Tsutsumi Y, Ema T. Green Chem. 2008; 10: 337
- 9 Lu XB, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462
- 10 Song J, Zhang Z, Han B, Hu S, Li W, Xie Y. Green Chem. 2008; 10: 1337
- 11 Zhang Y, Chan JY. G. Energy Environ. Sci. 2010; 3: 408
- 12 Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y. Green Chem. 2012; 14: 654
- 13 Pescarmona PP, Taherimehr M. Catal. Sci. Technol. 2012; 2: 2169
- 14 Zhang S, Chen Y, Li F, Lu X, Dai W, Mori R. Catal. Today 2006; 115: 61
- 15 Sun J, Fujita S.-I, Arai M. J. Organomet. Chem. 2005; 690: 3490
- 16 Caló V, Nacci A, Monopoli A, Fanizzi A. Org. Lett. 2002; 4: 2561
- 17 Ema T, Miyazaki Y, Koyama S, Yano YY, Sakai T. Chem. Commun. 2012; 48: 4489
- 18 Zhang YY, Chen L, Yin SF, Luo SL, Au CT. Catal. Lett. 2012; 42: 1376
- 19 Tharun J, Wang YH, Roshan R, Ahn S, Kathalikkattil AC, Park DW. Catal. Sci. Technol. 2012; 2: 1674
- 20 Clegg W, Harrington R, North M, Pasquale R. Chem. Eur. J. 2010; 16: 6828
- 21a Zhang X, Jia Y.-B, Lu X.-B, Li B, Wang H, Sun L.-C. Tetrahedron Lett. 2008; 49: 6589
- 21b Meléndez J, North M, Villuendas P, Young C. Dalton Trans. 2011; 40: 3885
- 21c Tasci Z, Ulusoy M. J. Organomet. Chem. 2012; 713: 104
- 21d Roy T, Kureshy RI, Khan NH, Abdi SH. R, Bajaj HC. Catal. Sci. Technol. 2013; 3: 2661
- 21e Luo R, Zhou X, Chen S, Li Y, Zhou L, Ji H. Green Chem. 2014; 16: 1496
- 22 Xiong YB, Wang H, Wang RM, Yan YF, Zheng B, Wang YP. Chem. Commun. 2010; 46: 3399
- 23a Whiteoak CJ, Kielland N, Laserna V, Escudero-Adán EC, Martin E, Kleij AW. J. Am. Chem. Soc. 2013; 135: 1228
- 23b Laserna V, Fiorani G, Whiteoak CJ, Martin E, Escudero-Adán E, Kleij AW. Angew. Chem. Int. Ed. 2014; 53: 10416
- 24a Qi C, Jiang H, Wang Z, Zou B, Yang S. Synlett 2007; 2: 255
- 24b Qi C, Jiang H. Sci. China 2010; 53: 1566
- 25 Qi C, Ye J, Zeng W, Jiang H. Adv. Synth. Catal. 2010; 352: 1925
- 26 Tharun J, Roshan KR, Kathalikkattil AC, Kang DH, Ryu HM, Park DW. RSC Adv. 2014; 4: 41266
- 27 Roshan KR, Kathalikkattil AC, Tharun J, Kim DW, Won YS, Park DW. Dalton Trans. 2014; 43: 2023
- 28 Roshan KR, Jose T, Kim D, Kathalikkattil AC, Park DW. Catal. Sci. Technol. 2014; 4: 963
- 29 Tharun J, Mathai G, Roshan R, Kathalikkattil AC, Kim BM, Park DW. Phys. Chem. Chem. Phys. 2013; 15: 9023
- 30a Zhao Y, Tian JS, Qi XH, Han ZN, Zhuang YY, He LN. J. Mol. Catal. A: Chem. 2007; 271: 284
- 30b Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y. Green Chem. 2012; 14: 654
- 30c Jose T, Hwang Y, Roshan R, Ahn S, Kathalikkattil AC, Park DW. Catal. Sci. Technol. 2012; 2: 1674
- 31 Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T. Chem. Commun. 2006; 1664
- 32a Wang H, Gurau G, Rogers RD. Chem. Soc. Rev. 2012; 41: 1519
- 32b Sun J, Cheng W, Yang Z, Wang J, Xu T, Xin J, Zhang S. Green Chem. 2014; 16: 3071
- 33a Hajipour AR, Heidari Y, Kozehgary G. RSC Adv. 2015; 5: 61179
- 33b Hajipour AR, Heidari Y, Kozehgary G. RSC Adv. 2015; 5: 22373
- 34 Brunaure S, Deming LS, Deming WE, Teller E. J. Am. Chem. Soc. 1940; 62: 1723
- 35 Typical Procedure: SiO2-His (0.65 g), 1,2-dichlorobenzene (internal standard for GC) and styrene oxide (10 mmol) were placed into the reactor. The atmosphere inside the reactor was replaced with 5 atm of CO2 and the mixture was vigorously stirred at 130 °C. After 10 h, the catalyst was separated by filtration, and GC analysis of the filtrate showed 99% yield of styrene carbonate. 4-Phenyl-1,3-dioxolan-2-one: white solid (1.63 g); mp 52–54 °C. IR (KBr): 1810 (C=O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.37–7.45 (m, 5 H), 5.68 (t, 3 J (H,H) = 8.0 Hz, 1 H, OCH), 4.80 (t, 3 J (H,H) = 8.0 Hz, 1 H, OCH2), 4.36 (t, 3 J (H,H) = 8.0 Hz, 1 H, OCH2). 4-Chloromethyl-1,3-dioxolan-2-one: colorless liquid (yield: 96%). IR (KBr): 1800 (C=O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.96–5.02 (m, 1 H, CH), 4.60 (t, 3 J = 8.0 Hz, 1 H, CH), 4.42 (dd, J = 8.0, 4.0 Hz, 1 H, CH), 3.69–3.83 (m, 2 H, CH2).
- 36 Zhu A, Jiang T, Han B, Zhang J, Xie Y, Ma X. Green Chem. 2007; 9: 169